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Abstract—This article presents a method for formation
controlof marine surface vessels inspired by Lagrangian me-
chanics. The desired formation configuration is given as a set
of constraint functions. The functions are treated analytically
and by using feedback from the imposed constraint functions,
constraint forces arise. Since the constraint functions are
designed for a desired effect, the forces can be seen as control
laws. These forces act so that the constraint functions are
satisfied in order to keep the formation assembled during
operations. Examples of constraint functions that can be
used to maintain a formation are presented. Simulations with
surface vessel models have been performed to illustrate the
proposed method.

I. INTRODUCTION

The fields of coordination and formation control with
applications towards mechanical systems, ships, aircraft,
unmanned vehicles, spacecraft, etc., have been the object of
recent research efforts in the last few years. This interest
has gained momentum due to technological advances in
the development of powerful control techniques for single
vehicles, the increasing computation and communication
capabilities, and the ability to create small, low-power and
low-cost systems. Researchers have also been motivated
by formation behaviors in nature, such as flocking and
schooling, which benefits the animals in different ways
[1], [2], [3], [4]. Many models from biology have been
developed to give an understanding of the traffic rules that
govern fish schools, bird flocks, and other animal groups,
which again have provided motivation for control synthesis
and computer graphics, see [5], [6] and the references
therein.
The interest in cooperative behavior in biological sys-

tems, and the mixture with the control systems field, have
led to observations and models that suggests that the motion
of groups in nature applies a distributed control scheme.
Further, the members of the formation are constrained
by the position, orientation, and speed of their neighbors
[1]. In the framework of [7] this has been translated
into artificial potential functions, dependent on the relative
distance between neighbors, that define the interaction
between vehicles in the formation.
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There exists a large number of publications on the
fields of cooperative and formation control – recent results
can be found in [4], [8], [9], [10] and [11]. See the
papers and references therein for an thorough overview. A
short introduction is given here. There exists roughly three
approaches to vehicle formation control in the literature:
leader-following, behavioral methods and virtual structures.
Briefly explained, the leader-following architecture de-

fines a leader in the formation while the other members
of the formation follows that leader. Variations on this
theme includes multiple leaders, forming a chain, and other
tree topologies. The behavioral approach prescribes a set
of desired behaviors for each member in the group, and
weight them such that desirable group behavior emerges.
Possible behaviors include trajectory and neighbor tracking,
collision and obstacle avoidance, and formation keeping.
In the virtual structure approach, the entire formation

is treated as a single, virtual, structure. Virtual structures
have been achieved by for example, having all members of
the formation tracking assigned nodes which move through
space in the desired configuration, and by using formation
feedback to prevent members leaving the formation [12].
In [13] each member of the formation tracks a virtual
element, while the motion of the elements are governed
by a formation function that specifies the desired geometry
of the formation.
The main issue in this paper is the formation con-

trol aspect in cooperative behavior of marine craft. More
specifically: how classic and powerful tools from analytical
mechanics for multi-body dynamics [14] can be used for
formation control issues. A collection of independent bod-
ies/vehicles can be controlled as a formation by introducing
functions that describe a vehicles behavior with respect
to the others. By treating these functions as mechanical
constraint functions in an analytical setting, stable control
laws that maintain the structure of a formation emerge. In
this way, the coordinated movement of the formation is
decided by forces that maintain the constraints at all times.
Mechanical constraint forces, which cause the bodies to

act in accordance with the constraints, are well known from
the early days of analytical mechanics [15] and has been
used with success, e.g. in computer graphics applications
[16], [17]. This paper will show how constraint functions
impose constraint forces which maintain the configuration
of a formation as a virtual structure. The formation is also
maintained when some, or all, of the members are exposed
to external forces and disturbances. The same approach can



be used with several, non-conflicting, constraint functions.
The intersection of these functions defines the control
objective for the total system–see Figure 1. Together, the
constraints form control laws that both govern the move-
ment of the entire formation and perform a specific task
given by the imposed constraint function(s).
The rest of this paper is organized as follows. Section II

presents a model for a formation of homogenous systems
with constraints, methods for stabilizing constraints, and
Section III shows how constraints can be imposed for
control purposes. Section IV gives examples of formation
control of marine craft with constraints. A comment re-
garding signal communication is given in Section V and
Section VI contains some concluding remarks.

II. MODELING AND CONTROL
Consider n systems of degree of freedom m with ki-

netic and potential energy, Ti and Ui, respectively. The
Lagrangian of the total system is then

L = T − U =
nX
i=1

Ti − Ui.

Suppose there exists kinematic relations

C (q) = 0, C (q) : Rnm → Rp (1)

between the generalized coordinates which restrict the state
space to a constraint manifold Mc. We denote C (q) as
the constraint function, where q ∈ Rnm contains the
generalized positions, q1,...,qn. We know, from [14], that
the forces that maintain the kinematic constraints adds
potential energy to the system. This gives the following,
modified, Lagrangian

L̄ = T − U + λ>C (q)

where λ ∈ Rp is the Lagrangian multiplier(s). To obtain
the equations of motion, we apply the Euler-Lagrange
differential equations with auxiliary conditions for i =
1, . . . , nm,

d

dt

∂L
∂q̇i
− ∂L

∂qi
+ λ

∂C (q)
∂qi

>
+

∂λ

∂qi

>
C (q) = τ i

which implies

d

dt

∂L
∂q̇i
− ∂L

∂qi
+ λ

∂C (q)
∂qi

>
= τ i (2)

C (q) = 0

where τ i is the generalized external force associated with
coordinate qi. This is actually a differential-algebraic equa-
tion (DAE) with index 2, which means that C (q) = 0 must
be differentiated twice before it can be converted into an
ODE.
To explain why differentiaon is needed, a small expla-

nation is in order. Equation (1) constrains the systems
motion to a subset, Mc ⊆ R2nm−p, of the state space
where C (q) = 0. Since we want to keep the systems

on Mc, neither the velocity nor the acceleration should
violate the constraints. To find the velocities that satisfy
the constraints, the kinematic admissible velocities, the
constraint function is differentiated with respect to time.
Similarly, we differentiate twice to find the kinematic
admissible acceleration of the constraints. This gives the
additional conditions

.

C (q) = W (q) q̇ = 0
..

C (q) = W (q) q̈ + Ẇ (q) q̇ = 0 (3)

where W (q) ∈ Rmn×p is the Jacobian of the constraint
function, i.e. W (q) = ∂C(q)

∂q . A combination of (2) and (3)
yields an expression for the Lagrangian multiplier:

WM−1W>λ =WM−1τ + Ẇ q̇

The expression for the constraint forces that maintain the
constraints are found from (2):

τ constraint = −
∂C (q)
∂q

>
λ = −W (q)

>
λ.

Consider, for simplicity, a formation of n point masses
with kinetical energy

T = 1

2
q̇>Mq̇

and where the only potential energy arise from the con-
straint function. This gives the equations of motion

Mq̈ +W (q)> λ = τ (4)

where τ is an external force.
Assumption A1: The Jacobian W (q) has full row-rank,

i.e., the constraints are not conflicting or redundant.
Note that redundant or conflicting constraints arise when

one, or more, row in C is a linear combination of other
rows, or when the functions are contradicting. An example
would be the same constraint function appearing twice in
C (q).
Assumption A1 guarantees that WM−1W exists since

M is positive definite, hence M−1 exists and WM−1W>

is nonsingular. Thus, the expression can be solved for λ
and used in (4).

A. Stabilization
The objective of introducing constraint functions is to

reduce the work space of the total system according
to the given constraints, i.e., the different vehicles in a
formation are not free to move at will but are restricted
to the formation constraints. Consider the case where the
constraint function C (q) consists of three constraints, as
shown in Figure 1. With each Ci restricting the statespace
to different subsets, the constraint manifold Mc is the
resulting intersection where all the constraints are fulfilled.
Hence, the control objective states that the system should
evolve on this manifold for all times.



Fig. 1. Statespace and the constraint manifold: intersection of three
constraints.

If the system starts on the constraint manifoldMc, that
is, the initial conditions q (0) = q0 and q̇ (0) = q̇0 satisfy
(q0, q̇0) ∈Mc such that

C (q0) = 0 and
.

C (q0, q̇0) = 0

and the force τ does not perturb the system so that (q, q̇)
leaves Mc, then the system is well behaved and (q, q̇) ∈
Mc for all times. However, if the initial conditions are
not in Mc, or the system is perturbed such that (q, q̇) 6∈
Mc, feedback must be introduced to stabilize the constraint
function.
We want to investigate stability of the constraint, and in

terms of set-stability we look at stability of the set

Mc = {(q, q̇) : C (q) = 0, W (q) q̇ = 0} .

Consider the case when τ 6= 0 in (4), and suppose that
(q0, q̇0) 6∈Mc. From the last section we have that

..
C (q, q̇) = 0. (5)

Equation (5) is in fact unstable – in the case C (q) is
a scalar function it can be seen as a transfer function
with two poles at the origin. Hence, if C (q) = 0 is not
fulfilled initially, the solution might blow up in finite time.
Even if C (q0) = 0, this might happen with noise present
on the measurements of q and q̇. This unstability is, in
fact, an inherent property of higher-index DAEs [18], and
is one of the reasons numerical methods for differential-
algebraic equations has received special attention [19] in,
e.g., modelling of mechanical systems, [20].
However, if we introduce feedback from the constraints

in the expression for the Lagrangian multiplier,

WM−1W>λ =WM−1τ + Ẇ q̇ +Kd

.

C (q, q̇) +KpC (q)
(6)

where Kp, Kd ∈ Rp×p and positive definite, we stabilize
the constraint acceleration

..
C = −Kd

.
C (q, q̇)−KpC (q) . (7)

By standard Lyapunov arguments, equation (7) guarantees
that (q, q̇)→Mc, i.e. the constraint functions are fulfilled.

III. CONTROL WITH CONSTRAINT FUNCTIONS

So far the focus has been on systems with constraints
without discussing how the constraints arise. In the control
literature, the main focus has been on models where
constraints are inherently in the system as they are all
based on how the model or the environment constrains the
system. Some of the difficulties related to simulations of
constrained systems and ways to solve them are described
in [21].
However, if a control objective can be defined as one

or more inter-vehicle constraint functions and if these
constraints are imposed on the system, the framework for
stabilization of constraints described earlier can be used
to design control laws that force the system to behave in
accordance with the control objective. The control laws
which utilize feedback from the constraints are applicable
for a wide variety of purposes, see [22] for a more thorough
description and more examples.

A. Examples of Constraint Functions

To see how formation control can be achieved, this
section will consider some examples of constraints that
can be imposed to coordinate and control certain aspects
of the group. To keep the notation compact, qi and q̇i =
vi are used for position and velocity of vehicle i, and
collected into vector notation as q = [q>1 , . . . , q

>
n ]
> and

v = [v>1 , . . . , v
>
n ]
>.

1) Distance Between Members: To keep a fixed distance
between members of the formation, functions arising from
norms in mathematics can be used. To maintain a relative
distance rij between group members i and j, let the
function be defined by

Crd (q) = (qi − qj)
> (qi − qj)− rij = 0. (8)

If the control objective implies a stricter formation, with
fixed offsets in the direction of each coordinate axis,
consider the alternative distance function

Cfd (q) = qi − qj − oij = 0 (9)

where oij describes the offset between members i and j.
Furthermore, the entire formation structure can be de-

cided by using a combination of distance constraint func-
tions. For example, two vehicles with one Crd-function is
a line-formation, three vehicles with three Crd-functions
form a triangle, and so on. By using the Cfd-functions,
constraints can also be imposed on the orientation, and the
desired offset between two members can be limited to a
certain coordinate axis. The last approach can be utilized
in a formation of AUVs moving on a horizontal plane.
An illustration of the two constraint functions is shown

in Figure 2.



Fig. 2. Different constraint functions acting between vessels determine
collective motion, Crd (–) and Cfd (- -).

2) Time-varying functions: The constraint function need
not only be dependent on generalized positions only. In-
stead, by letting the constraint functions depend on time,
the formation can, among other things, change its config-
uration during operations according to a time-dependent
signal. Consider the time-varying version of the relative-
distance constraint function:

Crdt (q, t) = (qi − qj)
>
(qi − qj)− rij (t) = 0. (10)

The addition of the time variable in the constraint func-
tion leads to a different expression for constraint velocity
and acceleration, but the procedure to find the Lagrange
multiplier is straightforward. Note that the expression for
the constraint forces remains the same in this case, i.e.,
τ constraint = −W>λ.
3) Inequalities: Inequality constraint functions on the

form c (q) ≥ 0 can be treated within the framework
presented in this paper through the logarithmic barrier
function [23] of the form

Cie (q) = −
X
i

log ci (q) = 0. (11)

This sort of function can be used when the control objective
is to keep the members of the formation more than a
certain distance away from each other, rather than at a
fixed, desired, distance, while still keeping the formation
assembled.

IV. CASE STUDIES
A. Formation Assembling
We consider a formation of three vessels where the

control objective is to assemble the craft in a predefined
configuration, e.g., in order to be in position to tow a barge
or another object. The purpose is to show that assembling
of the individual vessels into a formation can be done by
imposing constraints.
The equations of motion for a marine vessel in the body-

fixed frame, derived analytically in [24] using an energy

approach, are

η̇ = R (ψ) ν
Mν̇ + C (ν) ν̇ +D (ν) ν + g (η) = τ

where η = [x, y, ψ]
> is the Earth-fixed position vector,

(x, y) is the position on the ocean surface and ψ is the
heading angle (yaw), and ν = [u, v, r]

> is the body-fixed
velocity vector. The model matricesM =M> > 0, C, and
D denote inertia, Coriolis plus centrifugal and damping,
respectively, while g is a vector of generalized gravitational
forces and R = R (ψ) ∈ SO (3) is the rotation matrix
between the body and Earth coordinate frame. For more
details regarding ship modeling, the reader is suggested to
consult [24], [25], and [26]. The addition of the potential
energy from the constraints gives

η̇ = R (ψ) ν

Mν̇ + C (ν) ν̇ +D (ν) ν + g (η) = τ − J (η)
>
λ

These equations of motion can be transformed to the
Earth-fixed frame by the kinematic transformation in [24,
Ch. 3.3.1] which results in

Mη (η) η̈ + n (ν, η, η̇) = τη −R (ψ)J (η)
>
λ (12)

where n (ν, η, η̇) = Cη (ν, η) η̇ +Dη (ν, η) η̇ + gη (η) and
τη = R (ψ) τ .
Consider the constraint function

C1 (η) =

⎡⎢⎣ (η∗1 − η∗2)
> (η∗1 − η∗2)− r212

(η∗2 − η∗3)
> (η∗2 − η∗3)− r223

(η∗3 − η∗1)
> (η∗3 − η∗1)− r231

⎤⎥⎦ = 0 (13)

where η∗i ∈ R2 is the reduced position vector without
the orientation ψ and rij ∈ R is the distance between
vessel i and j. This constraint enables us to specify the
positions of each vessel with respect to the others, and
the constraint manifold is now equivalent to the formation
configuration, and by the previous sections we know that by
using feedback from the constraints we can stabilizeMc,
and hence the stabilization of the constraint functions gives
control laws for formation assembling. We assume there is
no external force or control law acting on the formation,
i.e. τ = 0. From the ship model and the constraint, we
have

Mηη̈ + n (ν, η, η̇) = −R (ψ)W (η)
>
λ

where Mη = Mη (η) = diag (Mη1,Mη2,Mη3), η =£
η>1 , η

>
2 , η

>
3

¤>, and so on. Further, the Lagrangian mul-
tiplier can be obtained from

WM−1η RW>λ =

−WM−1η n (ν, η, η̇) + Ẇ (η) η̇ +Kd

.

C (η) +KpC (η) .

Mη is a block-diagonal matrix consisting of positive def-
inite matrices, which makes Mη positive definite. Further,
since R is always non-singular and W has full rank due to
Assumption A1, WM−1η RW> is invertible.



Fig. 3. Position of vessels during assembling. Red indicates vessel 1,
green vessel 2, and blue vessel 3.

Fig. 4. Response of Assembling constraints.

The control parameters chosen to stabilize the constraint
function C2 are Kp = 1.6I3, Kd = 0.64I3, the formation
is defined by r12 = 2, r23 = 3, r31 = 3, and the
desired position for the first vessel is ηdes = [2, 4, 0]

>.
The vessels start in η10 = [1, 5, 0]

>, η20 = [0, 3, 0], and
η30 = [−1, 0, 0] – all with zero initial velocity.
The time-plots of the constraint function C1 and its time-

derivative,W1 (η) η̇, are shown in Figure 4. The constraints
and velocity terms converge to zero, and the constraint
manifold is reached. The vessels have converged to the
nearest positions where the constraints are fulfilled, and the
formation is hence assembled in the desired configuration.

B. Change of Configuration

In this section we will investigate how the formation
can change its configuration during operations. Consider
the case in IV-A, but let the desired distance between each

Fig. 5. Formation changes from triangular- to line- and back to triangular
formation again.

member be time-dependent

C1 (η, t) =

⎡⎢⎣ (η∗1 − η∗2)
> (η∗1 − η∗2)− r12 (t)

2

(η∗2 − η∗3)
> (η∗2 − η∗3)− r23 (t)

2

(η∗3 − η∗1)
> (η∗3 − η∗1)− r31 (t)

2

⎤⎥⎦ = 0.
The objective in this simulation is to modify the formation
configuration from a triangular shape to a line and then
back to a triangular formation again. This is done by keep-
ing r23 and r31 constant at 5 and let r12 be 5 (triangular
shape) or 10 (line formation). To ensure that the r12 (t)
is smooth enough, the arctan (·) function is used for the
transitions. A step-function in r12 (t) is not desirable since
its derivative is not continuous.
The Lagrangian multiplier can be obtained from

WM−1η RW>λ =WM−1η (τη − n (ν, η, η̇))

+ Ẇ (η) η̇ +
∂2C
∂t2

+Kd

.

C (η, t) +KpC (η, t) .

where τη consists of an external force on one of the vessels
in the direction shown in Figure 5.
The vessels start with zero velocity at their initial po-

sitions, and the control gains are chosen as Kp = 9 and
Kd = 6. The position of the vessels at different times
is shown in Figure 5, while the time-evolution of the
constraints are shown in Figure 6. The members of the
formation assembles initially into a triangular formation.
After 150 s the formation changes into a line formation
where the members travel side by side, and, finally, after
350 s, they assemble into a triangular formation again. The
changes in r12 (t) can be seen in the time-response of the
constraint functions.

V. SIGNAL COMMUNICATION REQUIREMENTS
The control laws that follow from the design requires in-

formation about the position and velocities of neighboring
vehicles, and are designed and implemented as a separate



Fig. 6. Constraint function and time derivative.

controller for each member of the formation in a decen-
tralized framework, i.e., the members of the formation
are only connected through their constraint functions. In a
circle-shaped formation, a vehicle needs only information
abour its two neighbors. However, since this applies for
every vehicle in the group, the coordination of the entire
formation emerges.
Hence, there is no explicit leader or any exogenous sys-

tem in this design. The dependence on position and velocity
measurements requires explicit communication channels
between vehicles that coordinate their motion with respect
to each other. A decentralized framework for formation
control offers some advantages compared to the centralized
approach, such as robustness with respect to vehicle loss.

VI. CONCLUSION
In this paper, we have shown how constraint functions

can be designed to hold members of a formation in a
desired configuration. The constraints impose forces on the
individual vehicles which again maintain the constraints.
Further, feedback from the constraints are used to render
the system robust again initial position errors during for-
mation assembling, external disturbances and measurement
noise. The constraint forces, which can be treated as control
laws, are derived in an analytical setting. In particular,
we have come up with control laws which maintain the
formation structure. Applications have been illustrated by
simulations of formation of marine craft.
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