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ABSTRACT: This paper presents a nonlinear state-space model suitable for numerical simulation and
ship motion control system testing for dynamic positioning (DP) operations. This model represents a
typical application of the tools included in the Marine Systems Simulator (MSS), and illustrates the
modelling philosophy of the MSS. This simulator is a Matlabr/Simulinkr-based toolbox specially devel-
oped at The Norwegian University of Science and Technology (NTNU) for education, rapid prototyping
and evaluation of marine control systems. The model presented here is based on results of standard
potential theory tools, which are used to obtain radiation and wave excitation forces. The �uid memory
e¤ects associated with the radiation forces are expressed as a reduced-order state-space model. This
is a key issue, which allows one to replace the traditional low-/wave-frequency motion superposition
principle by a uni�ed state-space model in body-�xed coordinates. The resulting model is suitable for
simulation of marine operations requiring station-keeping and low-speed ship manoeuvring in a seaway,
and can incorporate viscous forces, wave drift, current loads, wind loads, multi-body interactions, and
ship motion control systems.

1 INTRODUCTION

Numerical simulators have become an indispens-
able tool for control system design and analysis.
In the case of ships performing marine operations,
simulation scenarios can easily become complex
when including models of the environment, vessels,
mooring systems, risers, cranes with suspended
loads, pipe-line equipment, ship motion control
systems, etc.
At NTNU, there has been a continuous re-

search focus on marine control system simulation
tools during the past 10 years. Recently, the Ma-
rine Cybernetics Simulator (Sørensen et al., 2003)
and the Guidance Navigation and Control tool-
box (Fossen, 2002) have been merged under the
so-called Marine Systems Simulator (MSS, 2004).
This simulator is as a Matlabr/ Simulinkr-based
toolbox specially developed for rapid prototyping
and evaluation of marine control systems. MSS
includes a set of Matlab functions and several
Simulink libraries that cover a range of simulation
scenarios based on model detail, user expertise and
various applications of marine control systems for
course-keeping, path-following, dynamic position-
ing, roll stabilization, etc.
This paper presents a particular application

that illustrates the modeling philosophy of MSS:
a nonlinear state-space model for dynamically po-
sitioned surface vessels. A key aspect of this
approach is the state-space formulation of the
equations of motion in terms of body-�xed co-
ordinates adopted for MSS. Traditional models

used for control system design and testing use
data generated from standard hydrodynamic com-
puter programs, which compute hydrodynamic co-
e¢ cients and motion response transfer functions
due to waves (RAO�response amplitude opera-
tors). These models together with data obtained
from captive model testing in calm water (zero-
frequency coe¢ cients) provide one with the tradi-
tional framework that uses the superposition of the
wave-frequency motion and the low-frequency mo-
tion. This approach is suitable for studying wave-
vessel interactions for single vessels. In marine
operations, however, vessels interact with other
physical systems; thus, these types of operations
requires models that includes energy exchange be-
tween the interacting systems. Motivated by the
work of Bishop and Price (1981) and Bailey et al.
(1998) on a uni�ed model for manoeuvring in a
seaway, an approach enabling this consists of using
force transfer functions to represent the �rst-order
wave excitation forces and express the �uid mem-
ory e¤ects associated with the radiation forces in
a state-space form. By doing so, other e¤ects like
viscous forces, wave drift, current, and wind loads,
multi-body interactions, and ship motion control
systems can be incorporated into the model by
means of force superposition. This modular ap-
proach is the core philosophy of the MSS. To fa-
cilitate this, the model presented by Fossen and
Smogeli (2004) is here extended to incorporate cur-
rent, wind and second-order wave drift forces, as
well as external forces from interacting systems.
The coordinate transformations from the reference
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frames used in hydrodynamics to the body-�xed
coordinates used for control and the conversion of
the convolution integrals associated with potential
damping terms into a state-space form are put into
a rigid mathematical framework, and simulation
results for a particular vessel are used to illustrate
the use of the models in the MSS.

2 EQUATIONS OF MOTION

This section presents the 6 degrees-of-freedom
(DOF) equations of motion using vectorial me-
chanics. Emphasis is placed on keeping the kine-
matics nonlinear while linear theory is assumed for
the hydrodynamic forces and moments. In the
following, a linear velocity vector in the point O
decomposed in reference frame n is denoted as
vno ;and the angular velocity of frame b with re-
spect to frame n decomposed in frame n and b are
denoted !nnb and !

b
nb respectively.

2.1 Coordinate Systems
Three orthogonal coordinate systems are used to
describe the vessel motions in 6DOF; see Figure 1.

North-East-Down frame (n-frame): The n-
frame XnYnZn is assumed �xed on the Earth sur-
face with the Xn-axis pointing North, the Yn-
axis pointing East, and the Zn-axis down. It is
considered inertial. The n-frame position pn =
[n; e; d]> (north, east, down) and Euler angles
� = [�; �;  ]> (roll, pitch, yaw) are de�ned in
terms of the generalized coordinate vector � (Fos-
sen, 2002):

� = [(pn)>;�>]> =[n; e; d; �; �;  ]>: (1)

Hydrodynamic frame (h-frame): The hydro-
dynamic forces and moments are de�ned in a
steadily translating hydrodynamic coordinate sys-
tem XhYhZh moving along the mean path of the
ship with the constant speed U with respect to
the n-frame. For DP, U = 0: The XhYh-plane is
parallel to the mean water surface, the Zh-axis is
positive downwards, the Yh-axis is positive towards
starboard, and the Xh-axis is positive forwards,
coinciding with the time-average yaw angle of the
vessel � . The h-frame is considered inertial, and
the ship carries out oscillations about the steadily
translating frame XhYhZh: The h-frame origin is
denoted W while the h-frame generalized posi-
tion vector (describing the incremental displace-
ment and rotations of the vessel with respect to
the h-frame) is:

� = [�1; �2; �3; �4; �5; �6]
>: (2)

Note that the incremental heave position �3 = d.
The incremental Euler angles ��, which take the
h-frame into the orientation of the b-frame, are de-
�ned in terms of the Euler angles  , �; and � ac-
cording to:

��=

"
�4
�5
�6

#
,
"
��
��
� 

#
=

"
�
�

 � � 

#
; (3)

Figure 1: De�nitions of coordinate systems with ori-
gins: W (h-frame), O (b-frame), and N (n-frame). T
is the draught.

such that � represents the wave-frequency oscilla-
tions about a slowly-varying (constant for straight-
line motion) yaw angle � .

Body-�xed frame (b-frame): The b-frame
XbYbZb is �xed to the hull. The coordinate ori-
gin is denoted O and is located on the center line
a distance LCO relative to Lpp=2 (positive back-
wards) and a distance VCO relative to the base-
line (positive upwards), where Lpp is the length
between the perpendiculars. The center of gravity
G with respect to O is located at rbg = [xg; yg; zg]

>;
while the h-frame origin W with respect to O is
located at rbw = [xw; yw; zw]

>: The Xb-axis is posi-
tive toward the bow, the Yb-axis is positive towards
starboard, and the Zb-axis is positive downwards.
Consequently, the body-�xed b-frame carries out
oscillations about the steadily translating h-frame.
The b-frame translational velocities vbo = [u; v; w]

>

(surge, sway, heave) in O and angular velocities of
the b-frame with respect to the n-frame expressed
in the b-frame !bnb = [p; q; r]

> (roll, pitch, yaw) are
de�ned in terms of the generalized velocity vector
� (Fossen, 2002):

� = [(vbo)
>; (!bnb)

>]> = [u; v; w; p; q; r]>: (4)

Generally, the speci�c hydrodynamic program
used to calculate the hydrodynamic properties of
the vessel de�nes a local reference frame with axes
di¤erent from the h-frame. Consequently, the data
sets from this program must be transformed to the
h-frame by using rotation matrices.

2.2 Kinematics (b-frame to n-frame)

From Fossen (2002), the translational velocity
transformation between the b- and n-frame is:

vno = R
n
b (�)v

b
o; (5)

where vno = _pn, and the Euler angle rotation ma-
trix (zyx-convention) between the n- and b-frame
Rn
b (�) 2 R3�3 is de�ned as:
Rn
b (�) ="
c c� �s c�+ c s�s� s s�+ c c�s�
s c� c c�+ s�s�s �c s�+ s�s c�
�s� c�s� c�c�

#
:

(6)
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Here, s � = sin(�) and c � = cos(�). Note that
the rotation matrix Rb

a between any two frames
a and b (from a to b) has the special properties
that (Rb

a)
�1 = (Rb

a)
> = Ra

b : The Euler angle rates
satisfy:

_� = T�(�)!
b
bn; (7)

where T�(�) 2 R3�3 is the Euler angle attitude
transformation matrix:

T�(�) =

"
1 s�t� c�t�
0 c� �s�
0 s�=c� c�=c�

#
; � 6= ��

2
; (8)

and t � = tan(�). Consequently:

_� = J(�)�; (9)

where J(�) 2 R6�6 is the generalized velocity
transformation matrix:

J(�) =

�
Rn
b (�) 03�3
03�3 T�(�)

�
; � 6= ��

2
: (10)

2.3 Kinematics (b-frame to h-frame)
The transformation of a generalized velocity � in
the b-frame to a generalized velocity _� = [(vhw)

>;

( _��)>]> in the h-frame is done in two steps: a rota-
tion and a translation. The translational velocity
vbw of W and the angular velocity of the b-frame
with respect to the h-frame !bhb decomposed in the
b-frame are given by:

vbw = v
b
o + !

b
nb � rbw; (11)

!bhb = !
b
nb: (12)

where rbw is the vector from O to the mean po-
sition of W. The angular velocity of the h-frame
with respect to the n-frame !bnh is approximately
zero, since the h-frame is considered inertial (only
a slowly-varying yaw angle is assumed). The vec-
tor cross product � is de�ned in terms of the ma-
trix S(rbw) 2 R3�3 such that:

!bnb � rbw , �S(rbw)!bnb = S(rbw)>!bnb; (13)

where:

S(rbw) = �S>(rbw) =
"

0 �zw yw
zw 0 �xw
�yw xw 0

#
: (14)

Introducing the screw transformation H(rbw) 2
R6�6:

H(rbw) ,
�
I3�3 S(rbw)

>

03�3 I3�3

�
; (15)

it is clear that:�
vbw
!bhb

�
= H(rbw)

�
vbo
!bnb

�
: (16)

The rotation matrix from the b-frame to the h-
frame is de�ned as Rh

b (�
�) such that:

vhw = R
h
b (�

�)vbw: (17)

Similarly, the angular velocity transformation
from the b-frame to the h-frame becomes:

_��= T�(�
�)!bhb: (18)

Note that _�� 6= !hhb, since !hhb = Rh
b (�

�)!bhb.
From (16), (17), and (18) it follows that:�
vhw
_��

�
=

�
Rb
h(�

�) 03�3
03�3 T�(�

�)

� �
vbw
!bhb

�
(19)

=

�
Rb
h(�

�) 03�3
03�3 T�(�

�)

�
H(rbw)

�
vbo
!bnb

�
:

The generalized velocity transformation between
the h and b frames then becomes:

_� = J�(��)�; (20)

where J�(��) 2 R6�6 is a generalized velocity
transformation matrix:

J�(��)=

�
Rb
h(�

�) Rb
h(�

�)S(rbw)
>

03�3 T�(�
�)

�
: (21)

For most applications, the roll and pitch oscilla-
tions will be small, i.e. �� � 0, such that:

Rh
b (�

�) � I3�3; (22a)
T�(�

�) � I3�3; (22b)

J� , J�(0) = H(rbw); (22c)

where now J� is a constant matrix.

Assumption A1 The oscillations �� of the b-
frame with respect to the h-frame are small such
that (22) holds.

Note that assumption A1 only applies to the
transformation of forces and matrices between the
b-frame and the h-frame, while the nonlinear kine-
matics between the n-frame and the b-frame (9)
are preserved and hence valid for large Euler an-
gles �.

2.4 Kinetics
The generalized forces acting on the vessel are
found by formulating Newton�s 2nd law in b-frame
coordinates. Since the hydrodynamic forces and
moments are computed in h-frame coordinates
these will be transformed to the b-frame. Note
that using (21) and assumption A1, a generalized
force � (containing forces and moments) in the b-
frame can be transformed to the generalized force
� � in the h-frame by:

� � = (J�)�|� : (23)
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The 6DOF rigid-body equations of motion in the
b-frame are (Fossen, 2002):

MRB _� +CRB(�)� = �H + � ; (24)

where �H2 R6 contains generalized hydrodynamic
forces, � 2 R6 is a generalized vector contain-
ing environmental, propulsion and external forces,
CRB 2 R6�6 is the rigid-body Coriolis and cen-
tripetal matrix, andMRB 2 R6�6 is the rigid-body
system inertia matrix:

MRB =

�
mI3�3 �mS(rbg)
mS(rbg) Io

�
; (25)

where m is the vessel mass, rbg is the vector from
the center of gravity to the body frame origin, and
Io = I

>
o > 0 is the inertia tensor. The generalized

force vectors and inertia matrix are computed with
respect to the coordinate origin O.

Assumption A2 The Coriolis and centripetal
forces due to a rotating b-frame and added mass
are neglected in the following.

Assumption A2 is justi�able in low-speed appli-
cations like DP, where these terms are dominated
by damping and feedback. However, they may be
easily included in the �nal model if desired. Un-
der assumption A1 and A2 (i.e. CRB = 06�6 and
�� small), the b-frame equations of motion can be
transformed to the h-frame by using (20):

�� = J� _�; (26)

Pre-multiplying by (J�)�>, (24) can be written:

(J�)�>MRB(J
�)�1�� = (J�)�>(�H + � ): (27)

The generalized forces in the h-frame are de�ned
as � �H = (J

�)�>�H and �
� = (J�)�>� such that:

M�
RB
�� = � �H + �

�; (28)

whereM�
RB , (J�)�>MRB(J

�)�1.

3 HYDRODYNAMIC FORCES

The generalized hydrodynamic forces in the h-
frame can be expanded according to Faltinsen
(1990):

� �H = �
�
HS + �

�
R + �

�
W1; (29)

where � �HS is the generalized hydrostatic force, �
�
R

is the generalized radiation force representing �uid
memory e¤ects, and � �W1 is the generalized �rst-
order wave excitation force, consisting of Froude-
Krylov and di¤raction forces. The generalized hy-
drostatic forces, contributing only in heave, roll,
and pitch, are written as:

� �HS = �g�(�):

In the traditional hydrodynamic models it is as-
sumed that the response of the vessel is linear.
Thus superposition can be applied, and the hydro-
dynamic forces can be computed in the frequency
domain. Then, for sinusoidal excitation and mo-
tion, the generalized radiation forces can be writ-
ten as

� �R = �A�(!)�� �B�(!) _�; (30)

where A�(!) 2 R6�6 is the frequency dependent
added mass and B�(!) 2 R6�6 is the frequency
dependent potential damping. Note that under
assumption A2, B�(!) is de�ned for zero forward
speed such that the Coriolis and centripetal terms
due to added mass are zero and B = B|. Inserting
(30) in the equations of motion (28), the h-frame
representation becomes:

(M�
RB +A

�(!))�� +B�(!) _� + g�(�) = � �W + �
�:
(31)

Hydrodynamic programs like WAMIT (2004),
ShipX (VERES) (Fathi, 2004), SEAWAY (Journée
and Adegeest, 2003), etc., can be used to com-
pute A�(!) and B�(!) in terms of coe¢ cient ta-
bles, and the generalized �rst-order wave excita-
tion force � �W1 in terms of force transfer func-
tions. These terms are all computed in the h-
frame. The radiation-induced forces and moments
� �R are functions of frequency and time. In the
next section another form of the equations of mo-
tion, valid for more general excitation forces, is
presented.

3.1 Time-Domain Representation
From Cummins (1962) and Ogilvie (1964), the fre-
quency dependent terms A�(!) and B�(!) can be
removed from (31) by writing the equations of mo-
tion in the following form:

(M�
RB +A

�(1))�� +B�(1) _� + ��
+g�(�) = � �W1 + �

�;
(32)

where A�(1) = A�(1)| 2 R6�6 and B�(1)
are constant matrices evaluated at the in�nite fre-
quency, and�� is a potential damping term de�ned
as:

�� ,
Z t

�1
K�(t� �) _�(t)d� : (33)

K�(�) 2 R6�6 is a matrix of retardation functions,
and may be expressed as:

K�(�) =
2

�

Z 1

0

(B�(!)�B�(1)) cos(!�)d!: (34)

Note that K�(�) can be computed o¤-line using
the B�(!) data set. For details, including how
to add viscous damping and additional numerical
considerations, consult Fossen and Smogeli (2004).

Kristiansen and Egeland (2003) have proposed
a state-space formulation for the frequency depen-
dent damping term in (32). Since for causal sys-
tems K�(t � �) = 0 for t < 0, (33) is rewritten
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as:

��(t)
causal
=

Z t

0

K�(t� �) _�(t)d� : (35)

If _� is a unit impulse, then ��(t) given by (35) will
be an impulse response function. Consequently,
��(t) can be approximated by a linear state-space
model:

_� = Ar�+Br _�; �(0) = 0;

�� = Cr�+Dr
_�; (36)

where (Ar;Br;Cr;Dr) are constant matrices of
appropriate dimensions. Transforming (32) to the
b-frame, the equations of motion becomes:

M_� +D� + �+ g(�) = �W1 + � ; (37)

where the following transformations based on as-
sumption A1 are used:

M =MRB+J
�>A�(1)J�; (38a)

D = J�>B
�
(1)J�; (38b)

� = J�>�
�
; (38c)

g(�) = J�>g
�
(�); (38d)

�W1 + � = J
�>(�

�
W1 + �

�); (38e)

Notice that the properties M =M> > 0 and
_M = 0 also holds for this model since the general-
ized added mass matrix A�(1) is constant and
symmetric. The resulting nonlinear state-space
model from (9), (37), and (36) is:

_� = J(�)�; (39a)

M_� = �D� � J�>(Cr�+DrJ
��)| {z }

��

� g(�) + �W1 + � ; (39b)
_� = Ar�+BrJ

��|{z}
_�

; �(0) = 0: (39c)

4 ENVIRONMENTAL MODELS

4.1 Waves
Irregular waves are commonly described by a wave
spectrum S(!; �) = S(!)D(�), where the fre-
quency spectrum S(!) describes the energy dis-
tribution of the sea state over di¤erent frequencies
!, and the spreading function D(�) describes the
distribution of wave energy over directions � in the
n-frame. Common frequency spectra and spread-
ing functions may be found in e.g.Ochi (1998). For
simulation, the sea state is realized as a superpo-
sition of harmonic components extracted from the
wave spectrum, where the harmonic component j
is de�ned in terms of the amplitude �j, frequency
!j, direction �j, and random phase �j.

4.2 Wind
The wind is commonly parameterized by the veloc-
ity Uw(z; t) = �Uw(z) + Ug(t) and the direction �w
in the n-frame, where �Uw(z) is a height dependent
mean value and Ug(t) is a �uctuating gust com-
ponent de�ned from a wind gust spectrum. Com-
monly used gust spectra are the Harris wind spec-
trum (Det Norske Veritas, 2000) and the NORSOK
spectrum (NORSOK, 1999).

4.3 Current
For surface vessels, only the surface current is of
any importance. If the current is given by magni-
tude Uc and direction �c in the n-frame, the cur-
rent velocity vector relative to the vessel vbc may
be written as

vbc = Uc[cos(�c �  ); sin(�c �  ); 0]|: (40)

5 LOAD MODELS

This section details the implementation of the
�rst-order wave loads �W1, and introduces addi-
tional environmental loads �E from current, wind,
and second-order wave drift forces. How to include
external forces from interacting systems � I (moor-
ing systems, risers etc.) is also considered. Propul-
sion forces �P are not discussed further, since ac-
curate propulsion models are outside the scope of
this paper. The generalized force vector � in (24)
is therefore rewritten according to:

� = �E + �P + � I : (41)

5.1 Transformation tools
The inclusion of the forces � in the b-frame equa-
tions of motion (39) typically requires transfor-
mations of positions, velocities, accelerations, and
forces from one coordinate to another. Following
the approach in Section 2.3, the position xnp , ve-
locity vbp and acceleration _v

b
p of a point p located

at rbp in the b-frame can be expressed as:

xnp = � +Rn
b (�)r

b
p; (42)

vbp = H(rbp)�; (43)

_vbp = H(rbp) _�; (44)

where Rn
b (�) and H(r

b
p) are de�ned by (6) and

(15) respectively. Correspondingly, the general-
ized force vector � p with point of attack p is trans-
formed to the origin O by:

� = H|(rbp)� p: (45)

For details, see Fossen (2002). These tools can be
used as input to an interacting system, e.g. to �nd
the velocity and accelerations of the tip of a crane.
The force generated by an interacting system, e.g.
the force on the crane tip from a suspended load,
can then be transformed back to the origin of the b-
frame, and be included in the equations of motion.
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5.2 First-order wave forces
The �rst-order wave excitation forces in the h-
frame � �W1 = [� �1W1; � � � ; � �6W1] are calculated from
the force transfer functions T i(!j; �j) (for DOF i),
which are outputs from a hydrodynamic analysis
program and tabulated as functions of the wave
frequency !j and the wave heading relative to the
vessel 
rj = �j �  . The total excitation force is
the sum over N harmonic wave components, i.e.
for i = 1::6:

� �iW1 =
NX
j=1

�j
��T ij �� cos(!jt+ �j + arg(T

i
j )): (46)

5.3 Wave drift forces
The wave drift loads are a signi�cant part of the to-
tal excitation forces, and may divided into a mean
and a slowly varying component. For long-crested
waves, the determination of the drift forces can be
done by means of a set of approximations given in
Newman (1974) and Faltinsen (1990). A hydro-
dynamic program like WAMIT (2004) can deter-
mine the quadratic transfer functions T i2jj (for wave
component j and DOF i) from �rst-order potential
theory, with T i2jj tabulated as functions of !j and

rj. For i = 1::6, the total wave drift force �

i
W2 is

then given by:

� iW2 =
NX
j=1

NX
k=1

�j�kT
i2
jk cos

�
(!k � !j) t+ 'k � 'j

�
;

(47)
where 'j is a phase angle and T i2jk = T i2kj =
1
2

�
T i2jj + T i2kk

�
. Note that the mean wave drift force

given by j = k is valid for both long- and short-
crested waves, whereas the slowly-varying drift
force for j 6= k only is valid for long-crested waves.
The resulting wave drift load vector in the b-frame
�W2 is found from (45) using the vector from O to
the point of attack of the wave drift forces rbW2:

�W2 = H
|(rbW2)[ �

1
W2; � � � ; � 6W2 ]

|: (48)

5.4 Nonlinear damping/current forces
The linear drag component from the current is in-
cluded in the equations of motion (39) by replacing
the vessel velocity � in the damping termD� with
the relative velocity �r:

�r = � � vbc: (49)

Quadratic damping is not as easily included, but
several options exist. In surge, the viscous damp-
ing fc1 may be modelled by e.g. (Lewis, 1989):

fc1 =
�w
2
Su2r(1 + k)(Cf +�Cf ); (50)

Cf =
0:075

(log10Rn � 2)2
; (51)

where �w is the density of water, S is the wetted
surface of the hull, ur = u�Uc cos(�c� ) is the rel-
ative velocity in surge, k is the form factor giving a
viscous correction, Cf is the �at plate friction from
the ITTC 1957 line, �Cf represents friction due to
hull roughness, and Rn is the Reynolds number.
For relative current angles 
cr = j�c �  j � 0 the
cross �ow principle (Faltinsen, 1990) may be ap-
plied to calculate the nonlinear damping force in
sway fc2 and moment in yaw fc6:

fc2 =
�w
2

Z
Lpp

T (x)CD(x)v
x
r (x)jvxr (x)jdx; (52)

fc6 =
�w
2

Z
Lpp

xT (x)CD(x)v
x
r (x)jvxr (x)jdx:(53)

Here, T (x) is the draft, CD(x) is the 2 dimensional
drag coe¢ cient, and vxr (x) = vr+rx is the relative
cross-�ow velocity at x. vr = v � Uc sin(�c �  ) is
the relative velocity in sway, and r is the angular
velocity in yaw. Drag coe¢ cients for di¤erent hull
forms may be found in e.g. Hooft (1994). From
(45) the resulting nonlinear damping term in the
b-frame d(�r) becomes:

d(�r) = �H|(rbc)[ fc1 fc2 0 0 0 fc6 ]
|;
(54)

where rbc is the vector from O to the point of attack
of the drag forces c. A typical value could be rbc =
[0; 0; T=2]|. If available, quadratic drag coe¢ cients
from experiments or a CFD analysis may replace
the ITTC drag and cross-�ow formulations. The
relative generalized velocity �r should replace � in
all hydrodynamic computations.

5.5 Wind forces
The wind angle relative to the vessel is de�ned as

wr = �w� : The wind drag coe¢ cients Cw1, Cw2,
and Cw6 in surge, sway, and yaw are tabulated as
functions of 
wr, giving the wind forces fw1, fw2,
and fw6:

fwi = 0:5�aCwi(
wr)AwiUw jUwj ; (55)

where i 2 f1; 2; 6g, �a is the density of air, Aw1
and Aw2 are the transverse and lateral projected
areas of the hull above the waterline and the su-
perstructure, and Aw6 = Aw2Loa, where Loa is the
overall length of the vessel. Wind drag coe¢ cient
tables may be found in e.g. Blendermann (1986).
The resulting wind load vector in the b-frame �wind
is found in a similar manner as in (54) using the
vector from O to the point of attack of the wind
forces rbwind.

6 THE RESULTING MODEL

Combining the nonlinear state-space model (39)
and the load models from Section 5, the resulting

6



Figure 2: Block diagram of a DP operation as mod-
elled in MSS, with focus on the vessel dynamics.

vessel model implemented in the MSS is:

_� = J(�)�;

M_� = �D�r � d(�r)� J�>(Cr�+DrJ
��r)

� g(�) + �W1 + �W2 + �wind + �P + � I ;

_� = Ar�+BrJ
��r; �(0) = 0: (56)

Figure 2 shows a block diagram of a DP operation
as given by (56), focusing on the vessel dynam-
ics with the rigid-body equations of motion, and
forces from nonlinear damping, radiation, �rst-
order wave excitation, wave drift, wind, propulsion
and external loads.

7 SIMULATION RESULTS

Simulations were performed with the S-175 con-
tainer ship, with main particulars given in Ta-
ble 1. ShipX (VERES) (Fathi, 2004) was used
to compute the frequency dependent added mass
and damping, as well as the �rst-order exciting
wave force transfer functions. For details on the
frequency dependent coe¢ cients and computation
of the retardation functions, consult Fossen and
Smogeli (2004). The simulation shows a DP op-
eration with mean wave direction 45 degrees o¤
the bow. The sea state was generated from the
JONSWAP wave spectrum with signi�cant wave
height Hs = 4 m, wave peak frequency !p = 0:60
rad/s, spectrum peakedness factor 
 = 3:3, and a
directional spreading function giving short-crested
waves. At time t = 100 s a crane load of 1000
kN is applied at the point rbp = [0; 15; 0]

|. Figure
3 shows time series of the 6DOF generalized �rst-
order exciting wave forces �W1 and the radiation
forces �R, and Figure 4 shows time series of the
generalized position vector �. Even though the
crane load is applied as a step, the force superpo-
sition principle leads to physically natural vessel
motions: the main e¤ect is a new mean roll angle.

Table 1: The S-175 container ship main particulars.
Length between perpendiculars Lpp 175 m
Beam B 25.4 m
Draught T 9.5 m
Displaced volume r 24140 m3

Block coe¢ cient CB 0.572
LCG relative to midships -2.48 m

8 CONCLUSIONS

A nonlinear state-space model for surface ves-
sels performing station-keeping and low-speed ma-
noeuvring in a seaway has been presented. The
model representation using force superposition
rather than motion superposition was a key aspect,
since it allowed a modular description of complex
marine operations. This enabled the interaction of
various physical systems like vessels, cranes, risers,
and motion control systems. The presented mod-
els have been implemented in the Marine Systems
Simulator (MSS) developed at NTNU.
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