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Abstract— Range measurement systems are commonly based
on measuring time-of-flight of signals encoded in electro-
magnetic or acoustic waves. This leads to so-called pseudo-
range measurements due systematic errors such receiver clock
synchronization error and uncertain wave propagation speed.
Inertial navigation aided by pseudo-range measurements is
addressed. A modular nonlinear observer is designed and
analyzed. The attitude observer is based on a recent nonlinear
complementary filter, and includes a gyro bias estimation.
The translational motion observer includes the estimation of
position, range bias errors (such as receiver clock bias), velocity
and specific force, where the latter is used as a reference
vector by the attitude observer. The exponential stability of
the feedback interconnection of the two observers is analyzed
and found to have a semiglobal region of attraction with respect
to attitude observer initialization, and local region of attraction
with respect to translational motion observer initialization. The
latter is due to linearization of the pseudo-range and range-
rate measurement equations that is underlying the selection of
injection gains using a time varying Riccati equation. In typical
applications the pseudo-range and range-rate equations admit
an explicit algebraic solution that can be easily computed and
used to accurately initialize the position and velocity estimates.
Hence, the limited region of attraction is not seen as a limitation
of the approach. Advantages of the proposed nonlinear observer
include low computational complexity and a solid theoretical
foundation.

I. INTRODUCTION

The emergence of low-cost navigation systems is boosted
by the availability of low-cost MEMS IMUs (inertial mea-
surement units that provide measurements of acceleration
and angular rates), GNSS (global navigation satellite sys-
tems), magnetometers, optical sensors, and local range
(pseudo-range) sensors based on electro-magnetic and acous-
tics wave propagation. Our objective is to develop a low-
complexity nonlinear observer for inertial navigation aided
by a magnetometer and measurements of pseudo-range and
range-rate, where the observer has properties founded on sta-
bility theory. In general, tightly integrated inertial navigation
allows better performance to be achieved than loose integra-
tion, in particular in situations with few range measurement,
weak or noisy signals, uncertain wave propagation velocity,
poor transponder geometry, or other anomalies, e.g. [1], [2].

Commonly used methods for real-time integration or fu-
sion of the data from the individual sensors into position
and velocity are nonlinear versions of the Kalman-filter (KF),
[1], including the extended KF (EKF), unscented KF, particle
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filter, and specially tailored variants such as the multiplicative
EKF for attitude estimation using quaternions, [3]. While the
KF is a general method that has found wide applicability,
it does not come without some drawbacks. This includes
relatively high computational cost and a rather implicit and
not so easily verifiable convergence properties, [4], that may
require additional supervisory functions to avoid instability.
Its major advantages are flexibility in tuning and application,
as it is a widely known and used technology with intuitive
and physically motivated tuning parameters interpreted as
noise covariances, providing certain optimality properties.

Nonlinear observers for loosely integrated INS aiding
have received considerable attention during recent years,
and found to have significantly stronger stability properties
than nonlinear KF, see e.g. [5], [6], [7], [8]. Still, the
use of nonlinear observers has not been much investigated
for tight integration. One reason for this is the nonlinear
nature of the problem, since the measurement equations
are strongly nonlinear in this case, [1], [2]. As a notable
exception, tight integration of INS using range or pseudo-
range measurements with nonlinear observers is pursued in
the series of articles represented by [9], [10], [11], [12].
Using a state transformation and a state augmentation a linear
time-varying (LTV) model is derived. This model is closely
related to the nonlinear model, and is used for the design of
an observer for attitude, position and velocity using hydro-
acoustic range measurements. In contrast, our objective is to
avoid unnecessary computational complexity.

The proposed nonlinear observer structure is inspired
by [7], where a loose integration between GNSS posi-
tion/velocity measurements and inertial measurements was
derived with semiglobal exponential stability conditions. The
design philosophy considers that the ranges between the
vehicle and the used transponders1 are relatively large and
slowly time-varying. This is a good assumption in many
practical situations, such as terrestrial navigation using satel-
lites, and positioning of ships and underwater vehicles using
hydro-acoustic transponders at the seabed. In this case, time-
varying observer gains multiplying pseudo-range and range-
rate errors in the injection terms can be designed to shape
the dynamics of the observer using a time-varying linearized
relationship between a change in range and change in the
vehicle position. Relying on the semi-globally exponentially
stable nonlinear attitude observer of [13], [14], we do not use
a KF in the observer, and only use the time-varying Riccati

1Note that we use the term transponder as a general concept that also
includes radio beacons and navigation satellites in space, for example.



equation for gain matrix updates to the translational motion
observer. This allows the integration of the Riccati equation
to be performed on a slow time-scale corresponding to the
relative motion of the transponders and the receiver, which is
typically slow. This leads to low computational complexity.
A rigorous analysis of the observer error dynamics stability is
made in the paper, where a feature of the proposed approach
is a separation into four time scales:

• Instantaneous resetting of position and velocity esti-
mates using an algebraic solution to the pseudo-range
equations, [15], [16], during initialization or change
of transponder configuration. This approach justifies
that only a local region of attraction is required for
the position and velocity estimates due to the good
initialization accuracy.

• Attitude estimation using a fixed-gain nonlinear ob-
server, including gyro bias, on a fast time-scale driven
by the sampling rate of the IMU and magnetometer.

• Estimation of position, velocity, acceleration and bias
error model parameters for the pseudo-range measure-
ment system, using a nonlinear observer with time-
varying gains operating on a slower time-scale driven
by the sampling rate of the pseudo-range measurement
system.

• Computation of time-varying gain matrices for the
translational motion observer using a Riccati equation.
These computations are made on the slowest time-scale
driven by the relative motion between the vehicle and
the transponders.

A. Notation

We use || · ||2 for the Euclidean vector norm, || · || for
the induced matrix norm, and denote by (z1; z2) the column
vector with the vector z1 stacked over the vector z2. We
denote by In the identity matrix of dimension n, and we
use 0 to symbolize a matrix or vector of zeros, where the
dimensions are implicitly given by the context. For simplicity
of notation, we usually let time dependence be implicit.

A quaternion q = (sq; rq) consists of a real part sq ∈ R
and a vector part rq ∈ R3. For a vector x ∈ R3 we denote
by x the quaternion with zero real part and vector part x,
i.e. x = (0;x). The Hamilton quaternion product is given by
⊗, we let q∗ denote the conjugate of the quaternion q, and
for a vector x ∈ R3 we define the skew-symmetric matrix

S(x) :=

 0 −x3 x2
x3 0 −x1
−x2 x1 0


We may use a superscript index to indicate the coordinate
system in which a given vector is decomposed, thus xa and
xb refers to the same vector decomposed in the coordinated
systems indexed by a and b, respectively. The rotation
between these coordinate systems may be represented by a
quaternion qba. The corresponding rotation matrix is denoted
R(qba). The rate of rotation of the coordinate system indexed
by b with respect to a, decomposed in c, is denoted ωcab. We
use e for the Earth-Centered Earth-Fixed (ECEF) coordinate

system, b for the vehicle BODY-fixed coordinate system, and
i for the Earth-Centered Inertial (ECI) coordinate system.

II. MODELS AND PRELIMINARIES

A. Vehicle kinematics

The vehicle kinematic model is given by

ṗe = ve (1)
v̇e = −2S(ωeie)v

e + fe + ge(pe) (2)

q̇eb =
1

2
qeb ⊗ ωbib −

1

2
ωeie ⊗ qeb (3)

where pe, ve and fe are position, velocity and specific
force in ECEF, respectively. The attitude of the vehicle is
represented by a unit quaternion qeb representing the rotation
from BODY to ECEF, and ωbib represents the rotation rate of
BODY with respect to ECI. The known vector ωeie represents
the Earth’s rotation rate about the ECEF z-axis, and ge(pe)
denotes the plumb-bob gravity vector, which is a function of
the vehicle’s position.

B. Measurement models

The inertial sensor model is based on the strapdown
assumption, i.e. the IMU is fixed to the BODY frame:

f bIMU = f b (4)
ωbib,IMU = ωbib + bb (5)

ḃb = 0 (6)

where bb denotes the rate gyro bias that is assumed to satisfy
||bb||2 ≤Mb for some known bound Mb.

The magnetometer model describes the 3-dimensional
Earth magnetic vector field

mb
mag = mb (7)

Range measurements are typically generated by measuring
the time-of-flight of known signal waveforms (acoustic or
electromagnetic) either by some phase-measurement or time
of arrival detection circuits. Due to errors in clock synchro-
nization and wave propagation velocity, such measurements
often contain systematic errors (biases) in addition to random
errors, e.g. [17], and must therefore be treated as pseudo-
range measurements. The range measurement model is

yi = %i + ζTi β, %i = ||pe − pei ||2 (8)

for i = 1, 2, ....,m where yi is a pseudo-range measurement,
pei is the known position of the i-th transponder, m is the
number of measurements, %i is the geometric range, β ∈ Rn
is a bias error vector to be estimated, and the coefficient
vector ζi describes the effect of each element of β on range
measurement yi. This framework allows both individual and
common mode slowly time-varying errors such as receiver
clock bias (i.e. ζi = 1 and β := c∆c where ∆c is the clock
bias and c is the speed of wave propagation) or uncertain
wave propagation speed to be taken into account.

Range-rate measurements are usually found by consid-
ering Doppler-shift or tracking of features in signals or
sequences of images. Also here there may be systematic



(bias) errors in some cases, depending on the sensor principle
and technology. The range-rate (speed) measurement model
is given by

νi =
1

%i
(pe − pei )

T
(ve − vei ) + ϕTi β (9)

where νi is the relative range-rate measurement, the coef-
ficient vector ϕi describes the effect of each element of β
on range speed measurement νi, and we define vei := ṗei .
Eq. (9) follows from time-differentiation of (8), assuming
an independent errors model such that we use β̇ = 0
and the term ϕTi β instead of ζTi β̇ in the model since it
provides additional flexibility in modeling. Note that β̇ = 0
is the classical constant parameter assumption in adaptive
estimation and does not prevent us from estimating a slowly
time-varying β in practice.

We assume that the effect of lever arms, due to sensors
being located at different known locations on the vehicle,
can be neglected or compensate for by additional rotations
and translations.

C. Fundamental properties and assumptions

Despite the nonlinear nature of the pseudo-range measure-
ment equation, we can exploit its quadratic character to get
a relatively simple algebraic solution, [15], [16]. Assume an
arbitrary position p̂e is given, and define line-of-sight (LOS)
vectors p̆ei := p̂e − pei for every i.

Lemma 1: Assume we have available four pseudo-range
measurements y1, y2, y3, y4 where the three first LOS vectors
among p̆e1, p̆

e
2, p̆

e
3, p̆

e
4 are linearly independent, and

y4 6= (y1, y2, y3)Ă−1p̆e4 (10)

with

Ǎ =

(
p̆e1 p̆e2 p̆e3 p̆e4
y1 y2 y3 y4

)
Assume ζi = 1 for all i = 1, 2, 3, 4 (i.e. a single common
mode error parameter), then pe = p̂e + p̃e is given by z =
(p̃e;β) where

z =
řǔ+ v̌

2
, ǔ = Ǎ−T ě, v̌ = Ǎ−T b̌

ř =
−2− ǔTWv̌ ±

√
(2 + ǔTWv̌)2 − ǔTWǔ · v̌TWv̌

ǔTWǔ

where ě = (1; 1; 1; 1), b̌ ∈ R4 has components b̌i = y2i −
||p̆ei ||22, and W = diag(1, 1, 1,−1).

Proof: The proof is similar to [15], [16].
The computations are analytic and the most complex

operations are the inversion of a 4× 4 matrix as well as the
square root computation. We note that there are in general
two solutions. This ambiguity can be solved in several ways.
One is using five or more range measurements, allowing a
linear re-formulation of the estimation problem, [15], [16].
Alternatively, the ambiguity may be resolved using domain
knowledge. One example is terrestrial navigation when there
is a large distance to the navigation satellites such that non-
terrestrial solutions for the vehicle position can be ruled out.
Another example is surface or underwater navigation where

all transponders are located on the seabed and the vehicle is
at the surface or at some distance from the seabed such that
positions below the seabed can be ruled out. Altimeters and
depth sensors are also useful for this purpose.

Assumption 1: At all time, % ≥ %i ≥ % > 0 for all i =
1, 2, ...,m.

Assumption 2: At all time, ||ve − vei ||2 ≤ ν for all i =
1, 2, ...,m.

Assumption 3: The transponder positions pei and veloci-
ties vei are known.

Remark 1: We have chosen to consider only the effect
of slowly time-varying systematic errors (parameterized by
β) in this formulation and analysis. Rapidly varying errors
such as high-frequency noise are neglected since they can
be handled by appropriate tuning of the gains and may not
influence the structure of the observer.
We note that with known position, the range-rate equation (9)
becomes linear and thus easy to solve for velocity. In typical
range-measurements systems, the remaining measurement
errors are typically so small that a good position and velocity
initialization of an observer can be found using Lemma 1
such that a relatively small local region of attraction with
respect to position and velocity initialization error can be
accepted.

III. NONLINEAR OBSERVER

A. Attitude observer

We use the attitude observer from [13], [14]. It assumes
that two vectors have known decompositions in both BODY
and ECEF frames, enabling the estimation of the unknown
rotation matrix relating the BODY and ECEF frames. More
specifically, we will consider the measurements mb and f b

available in the BODY frame. The corresponding vectors in
the ECEF frame is the local magnetic field me and some
estimate f̂e that will be an output of the translational motion
observer:

˙̂qeb =
1

2
q̂eb ⊗

(
ωbib,IMU − b̂

b

+ σ̂

)
− 1

2
ωeie ⊗ q̂eb

(11)
˙̂
bb = Proj

(
−kI σ̂, ||b̂b||2 ≤Mb̂

)
(12)

σ̂ = k1m
b
mag ×R(q̂eb)

Tme

+k2f
b
IMU ×R(q̂eb)

T satMf
(f̂e) (13)

where ωeie and me are assumed known. Observer errors are
defined as q̃ = qeb ⊗ q̂e∗b and b̃ = bb − b̂b, and we define
χ = (r̃; b̃) where r̃ denotes the real part of the quaternion
q̃. Proj(·) is a projection operator that ensures ||b̂b||2 ≤ Mb̂
with Mb̂ > Mb, see [7]. Moreover, satMf

(·) is a saturation
operator, with Mf such that ||fe||2 ≤ Mf . The QUEST
algorithm, [18], may be used for initialization of the attitude.

Semiglobal stability of the algorithm is established for
f̂e = fe in [7] under the following assumption:

Assumption 4: The acceleration f b and its rate ḟ b are
uniformly bounded, and there exist a constant cobs > 0 such
that ||f b ×mb||2 ≥ cobs for all t ≥ 0.



B. Translational motion observer
Inspired by [7], we propose the following observer

˙̂pe = v̂e +

m∑
i=1

(Kpp
i ey,i +Kpv

i eν,i) (14)

˙̂ve = −2S(ωeie)v̂
e + f̂e + ge(p̂e)

+

m∑
i=1

(Kvp
i ey,i +Kvv

i eν,i) (15)

ξ̇ = −R(q̂eb)S(σ̂)f bIMU

+

m∑
i=1

(
Kξp
i ey,i +Kξv

i eν,i

)
(16)

f̂e = R(q̂eb)f
b
IMU + ξ (17)

˙̂
β =

m∑
i=1

(
Kβp
i ey,i +Kβv

i eν,i

)
(18)

where the gain matrices K∗
i are in general time varying.

While the structure is similar to [7], the injection terms
are different, and [7] does not include estimation of the
parameter vector β. A common feature is that fe is viewed
as an unknown input which is estimated in (16)–(17) to be
used in (13). The injection errors from pseudo-range and
range-rate measurements are defined as ey,i := yi − ŷi and
eν,i := νi − ν̂i, with estimated measurements

ŷi = %̂i + ζTi β̂

ν̂i =

(
p̂e − pei
%̂i

)T
(v̂e − vei ) + ϕTi β̂

where %̂i := ||p̂e − pei ||2, and the estimation errors are p̃ :=
pe − p̂e, ṽ := ve − v̂e, and β̃ := β − β̂. Next, we consider a
linearization of the injection terms, and present the following
result that can be proved using Taylor’s theorem:

Lemma 2: The injection errors satisfy

ey,i =

(
p̂e − pei
%̂i

)T
p̃+ ζTi β̃ + εy,i (19)

eν,i =

(
v̂e − vei
%̂i

)T
p̃+

(
p̂e − pei
%̂i

)T
ṽ + ϕTi β̃ + εν,i

(20)

where

||εy,i||2 ≤ 1

%
||p̃||22 (21)

||εν,i||2 ≤ 1

%
||p̃||2 · ||ṽ||2 +

3ν

2%2
||p̃||22 (22)

We define the state of the error dynamics as x :=
(p̃; ṽ; f̃ ; β̃), where f̃ := fe − f̂e replaces ξ as a state by
combining (16) and (17). Summarized, the equations for
the predicted measurement error can now be written in the
linearized time-varying form

ey,i = Cy,ix+ εy,i (23)
eν,i = Cν,ix+ εν,i (24)

where the 2m rows of the time-varying matrix

C := (Cy,1; . . . ;Cy,m;Cν,1; . . . ;Cν,m)

are defined by Cy,i := (d̆Ti , 0, 0, ζTi ) and Cν,i :=
(v̆Ti , d̆

T
i , 0, ϕTi ). The estimated LOS vectors are d̆i :=

(p̂e − pei )/%̂i = p̆ei/%̂i and the normalized estimated relative
velocity vectors are v̆i := (v̂e − vei )/%̂i.

We note that the time varying matrix C is known at the
current time and can be used for selection of gain parameters.
With large distance between the vehicle and transponders, the
LOS vector will be slowly time varying, and the velocity will
be relatively small. Hence, the measurement matrix C will
be slowly time-varying, since due to Lemma 1 the transients
resulting from errors in initialization of position and velocity
are not expected to be significant.

Following [7] we arrive at the error dynamics

ẋ = (A−KC)x+ ρ1(t, x) + ρ2(t, χ) + ρ3(t, x) (25)

where

A :=


0 I3 0 0
0 0 I3 0
0 0 0 0
0 0 0 0



K :=


Kpp

1 . . . Kpp
m Kpv

1 . . . Kpv
m

Kvp
1 . . . Kvp

m Kvv
1 . . . Kvv

m

Kξp
1 . . . Kξp

m Kξv
1 . . . Kξv

m

Kβp
1 . . . Kβp

m Kβv
1 . . . Kβv

m


The perturbation terms are defined as ρ1(t, x) :=
(0; ρ12(t, x); 0; 0) with ρ12(t, x) := −2S(ωeie)x2+(ge(pe)−
ge(pe − x1)), and ρ2(t, χ) := (0; 0; d̃; 0) with

d̃ = (I −R(q̃)T )R(qeb)(S(ωbib)f
b + ḟ b)

−S(ωeie)(I −R(q̃)T )R(qeb)f
b −R(q̃)TR(qeb)S(b̃)f b

see [7], where it is also shown that ||ρ2(t, χ)||2 ≤ γ3||χ||2
for some constant γ3 > 0. A main difference compared
to [7] is that with the range and range-rate measurement
model, the matrix C is slowly time-varying, and there is
an additional perturbation term ρ3(t, x) := Kε(t, x) that
results from the linearization of the injection terms: ε :=
(εy,1; ...; εy,m; εν,1; ...; εν,m). We note that from Lemmas 1
and 2 that the errors are small when % is large compared to
||p̃||2, ||ṽ||2 and ν, and ||β||2 is relatively small.

As in [7], we want to employ a parameter θ ≥ 1 in order
to assign a certain time-scale structure to the error dynamics
(25). For this purpose, we introduce the non-singular state-
transform matrix

Lθ := blockdiag
(
I3,

1

θ
I3,

1

θ2
I3,

1

θ3
In

)
(26)

and the state transform η = Lθx.
Lemma 3: Let K0 ∈ R(9+n)×2m be an arbitrary time-

varying gain matrix, and θ ≥ 1 be an arbitrary constant.
Define

K := θL−1
θ K0Eθ (27)

where it is assumed that the time-varying Eθ ∈ R2m×2m

satisfies EθC = CLθ. Then the error dynamics (25) is



equivalent to

1

θ
η̇ = (A−K0C)η +

1

θ
ρ1(t, η) +

1

θ3
ρ2(t, χ)

+K0Eθε(t, L
−1
θ η) (28)

Proof: The transformed dynamics are derived by sub-
stituting (25) in η̇ = Lθẋ. It is straightforward to show that
LθAx = θAη. Moreover, LθKCx = θLθL

−1
θ K0EθCx =

θK0CLθx = θK0Cη. The rest of the proof follows by
change of variables according to η = Lθx.
The existence of an Eθ satisfying EθC = CLθ depends on
the null-space of C. We note that

C =

(
GT 0 0 DT

p

BT GT 0 DT
v

)
where G = (p̆e1, ..., p̆

e
m) ∈ R3×m, B = (v̆e1, ..., v̆

e
m) ∈

R3×m, and D = (Dp;Dv) with Dp = (ζ1, ...., ζm) and
Dv = (ϕ1, ...., ϕm). In order to characterize the null-space
of C, let Z ∈ Rn×(n−k) have n− k columns that forms an
orthonormal basis for the null-space of DT and Y ∈ Rn×k
have k = rank(DT ) columns that forms an orthonormal basis
for the range-space of DT . It follows that DTZ = 0 and
rank(DTY ) = k. Consider a vector x = (x1;x2;x3;x4),
where x1, x2, x3 ∈ R3 and x4 ∈ Rn. Let x4 = Zx4Z+Y x4Y
where x4Z ∈ Rn−k and x4Y ∈ Rk. The vector x belongs to
the null-space of C if Cx = 0, which is equivalent to

M

 x1
x2
x4Y

 = 0 (29)

where

M =

(
GT 0 DT

p Y
BT GT DT

v Y

)
Assumption 5: The pseudo-range and range-rate measure-

ment system satisfies:
1) The number of transponders is m ≥ 3 + dk/2e.
2) 3 of the estimated LOS vectors are linearly indepen-

dent, i.e. rank(G) = 3.
3) 3 of the estimated normalized relative velocity vectors

are linearly independent, i.e. rank(B) = 3.
Lemma 4: Eθ = CLθC

+ satisfies EθC = CLθ, where
C+ is the Moore-Penrose right pseudo-inverse of C.

Proof: From Assumption 5 it follows immediately that
M ∈ R2m×(6+k) has rank 6 + k, and 2m ≥ 6 + k. From
(29) it follows that the null-space of C is characterized by
x1 = 0, x2 = 0, x4Y = 0 while x3 and x4Z can be arbitrary.

Now, consider a singular value decomposition C =
USV T , where the Moore-Penrose pseudo-inverse is given
by C+ = V S+UT . From the characterization of the null-
space of C, we have

C+C = V S+SV T = blockdiag(I3, I3, 03, J)

for some matrix J ∈ Rn×n, and we get LθC+C = C+CLθ
due to both C+C and Lθ sharing the same block diagonal
structure. The result follows from

EθC = CLθC
+C = CC+CLθ = CLθ (30)

since CC+C = C.
Some discussion of Assumption 5 is useful. The assump-

tion is reasonable and closely related to both the assumptions
underlying Lemma 1, as well as observability that will be
considered shortly. If there are no range-rate measurements
then M = (GT , DT ) ∈ Rm×(3+k) and it can be verified that
m ≥ 3 + k transponders, with 3 independent estimated LOS
vectors, are needed for M to have full rank.

C. Stability analysis

As the first step towards the stability analysis, we consider
the LTV nominal time-scaled error dynamics

1

θ
η̇ = (A−K0C)η (31)

and analyze its stability and robustness before we consider
the effect of the perturbations in (28).

Let R > 0 be a 2m × 2m symmetric matrix that can be
interpreted as the covariance of the pseudo-range and range-
rate measurement noises. The observability Gramian for the
system (A,R−1/2C) is

W(t, t+ T ) =

∫ t+T

t

ΦT (τ)CT (τ)R−1C(τ)Φ(τ)dτ

where the transition matrix is Φ(τ) = eAτ , and we recall
(from e.g. [19]) that the LTV system is said to be uniformly
completely observable if there exist constants α1, α2, T > 0
such that for all t ≥ 0 we have

α1I ≤ W(t, t+ T ) ≤ α2I (32)

Assumption 6: The LTV system (A,R−1/2C) is com-
pletely uniformly observable.

Remark 2: We note that these assumptions are related to
the well-known need for at least three range measurements
from transponders at linearly independent positions in order
to uniquely determine the three components of the position
and velocity vectors, if there are no other unknowns. In-
dependence is related to the well-known requirements that
the geometric configuration of the transponders must avoid
singularities such as co-linear location, cf. Lemma 1, and
the degradation of precision when this configuration is close
to singular. When n = dim(β) > 0, more than three
independent range measurements will be needed, for example
it is well known in the context of GNSS receiver clock-
bias estimation that a fourth satellite range measurement is
needed. In some cases, Assumption 6 follows directly from
Assumption 5 and is redundant.

Lemma 5: Suppose

K0 := PCTR−1 (33)

where P satisfies the time-scaled Riccati equation

1

θ
Ṗ = PA+ATP − PCTR−1CP +Q (34)

for some positive definite symmetric matrices R, and P (0),
and positive definite symmetric matrix Q. Then P is uni-
formly bounded and the origin is a globally exponentially



Fig. 1. Observer block diagram.

stable equilibrium point of the LTV nominal error dynamics
(31) for any constant θ ≥ 1.

Proof: The proof follows from [19], [20], and we
repeat the main ideas since we need the Lyapunov function
later. Consider a Lyapunov function candidate U(η, t) =
1
θη
TP−1η, which is positive definite and well-defined due to

the time-varying matrix P satisfying (34) being symmetric,
positive definite with some margin, and bounded, [19]. It
follows by standard arguments that along the trajectories of
the nominal error dynamics and the solution of (34) that
U̇ = −ηT (P−1QP−1 + CTR−1C)η.

The structure of the observer is illustrated by the block
diagram in Figure 1. We notice two feedback loops where
one is due to the use of f̂e as a reference vector in the
attitude observer and the other is caused by linearization of
the pseudo-range and range-rate measurement equations to
get the C-matrix when solving the Riccati equation for the
translational motion observer gain K. Below, we analyze the
stability conditions.

Assumption 7: Initial conditions are in the following sets:

• X ⊂ R9+n is a ball containing the origin.
• P ⊂ R(9+n)×(9+n) is an arbitrary compact set of

symmetric positive definite matrices.
• D(ε) = {q̃| |s̃ > ε} represents a set of attitude

errors bounded away from 180◦ by a (small) margin
determined by an arbitrary constant ε ∈ (0, 12 ).

• B = {b ∈ R3 | ||b||2 ≤Mb}.
Assumption 8: Observer gains are chosen according to

• k1, k2 > 0 are sufficiently large, cf. [7].
• kI > 0 is arbitrary.
• K is chosen according to (27), (33) and (34) tuned by

symmetric R > 0 and symmetric Q > 0.
Proposition 1: There exists a θ∗ ≥ 1 such that for all θ ≥

θ∗ there exist a non-empty ball X such that P is uniformly
bounded and√
||x(t)||22 + ||χ(t)||22 ≤ κe−λt

√
||x(0)||22 + ||χ(0)||22

for some κ > 0 and λ > 0.
Proof: Using U(η, t) := 1

θη
TP−1η, we get from the

proof of Lemma 5 that

U̇ = −ηT (P−1QP−1 + CTR−1C)η

+
2

θ
ηTP−1PCTR−1Eθε

+
2

θ
ηTP−1ρ1(t, η) +

2

θ3
ηTP−1ρ2(t, χ)

≤ −γ1||η||22

+
2

θ
||η||2 · ||CTR−1|| ·

m∑
i=1

||Eθ||(ε2y,i + ε2r,i)

+
1

θ
γ2γ4||η||22 +

1

θ3
γ3γ4||η||2 · ||χ||2 (35)

where γ1, γ2, γ3, γ4 > 0 are constants independent of θ. Note
that a uniform upper bound on P−1 that does not depend on
θ exists, see Lemma 6. Using Lemma 2,

U̇ ≤ −γ1||η||22 +
1

θ
γ5(%, ν)||η||32

+
1

θ
γ2γ4||η||22 +

1

θ3
γ3γ4||η||2 · ||χ||2

where γ5(%, ν) increases with ν and decreases with %, and
is independent of θ.

Similar to [7], we can show that for any δ > 0 and T > 0
there exists a θ∗1 ≥ 1 such that for θ ≥ θ∗1 there exists an
invariant set X1 ⊂ R9+n such that for ||η(0)||2 ∈ X1 we
have for all t ≥ T that ||η||2 ≤ δ. As argued in [7] this
implies |s̃| ≥ ε such that q̃ never leaves D(ε). Inspired by
[7], we now define the function

W (t, r̃, s̃, b̃) :=
(
1− s̃2

)
+ 2`srR(qeb)b̃+

`

kI
b̃T b̃

where ` > 0 is a constant [14]. Under the condition |s̃| ≥ ε,
W is shown in [7] to satisfy

Ẇ ≤ −γ7||χ||22 + γ6θ
2||χ||2 · ||η||2 (36)

for some constants γ6, γ7 > 0 that are independent of θ. Next
we define the Lyapunov-function candidate V (t, η, χ) :=
U(t, η) + 1

θ5W (t, χ). Then

V̇ ≤ −z
(
γ1 − γ2γ4

θ −γ3γ4+γ62θ3

−γ3γ4+γ62θ3
γ7
θ5

)
z +

γ5(%, ν)

θ
||η||32

where we have defined the auxiliary state z := (||η||2;
||χ||2) ∈ R2. Considering the first- and second-order princi-
pal minors, we get the conditions

θ∗ > max

(
γ2γ4
γ1

,
γ2γ4γ7 + (γ3γ4 + γ6)2

γ1γ7

)
(37)

Hence, we can choose a θ∗ ≥ θ∗1 satisfying (37) such that for
all θ ≥ θ∗ there exists an invariant set X2 and α3, α4 > 0,
where for all x ∈ X2 we have

V̇ ≤ −α3||z||22 − α4||χ||22 ≤ −2λV

for some λ > 0, and the result follows by choosing X as the
largest invariant set such that X ⊂ X1 ∩X2, and application
of the comparison lemma, [21].

In typical applications where the LTV system (28) is
slowly time varying, we can reap the benefits of solving the



Riccati equation on a slower time-scale than the estimator
updates, roughly speaking only when there is a significant
change in the C-matrix due to the relative motion of the
vehicle and the transponders, or enabling or disabling some
range measurements.

IV. CASE STUDY

We consider tight integration of a GNSS using pseudo-
range measurements, an IMU and a magnetometer. We
consider four satellites with initial positions based on an
example in [1], p. 271. The initial receiver clock bias leads
to an initial range error β(0) = c∆c = 264691.13 m, and
we assume the clock drifts with an effect β̇ = 0.001 m/s.
We simulate a smooth motion with some relatively small
accelerations and angular velocities.

We simulate the pseudo-range measurements with 1 s
sampling period with white noise of 1 m standard devia-
tion. Magnetometer, gyro and accelerometers are sampled at
10 ms with simulated random noise with standard deviations
of 1.15 mGauss, 0.8 deg/s and 0.09 m/s2, respectively,
corresponding to the typical RMS output noise specification
of an Analog Devices ADIS 16407 IMU. The gyro has
a constant unknown bias. Observer gains are chosen as
kI = 0.03, k1 = k2 = 0.5, θ = 1, R = I4, and Q =
diag(0, 0, 0, 10−7, 10−7, 10−7, 0.25, 0.25, 0.25, 5)·10−3. The
Riccati equation is initialized by P (0) solving the algebraic
Riccati equation. Euler’s method is used to discretize the
observer and to simulate the vehicle’s motion.

Fig. 2. Simulation results wih errors in position. Black (dashed-dotted) is x-
component, red (solid) is y-component, while blue (dashed) is z-component.

Typical simulation results are show in Figures 2–5. Initial
values p̂e(0) and β̂(0) are computed using Lemma 1 at time
t = 0. Initial values for the attitude estimates are set to a
few degrees error, and v̂e(0) = 0, ξ(0) = 0 and b̂(0) = 0.

Between 200 s ≤ t ≤ 250 s the signal from Satellite 3
is unavailable, and between 210 s ≤ t ≤ 230 s the signal
from Satellite 4 is also unavailable. Hence, the observability
condition is violated during 200 s ≤ t ≤ 250 s. We observe

Fig. 3. Simulation results. Errors in attitude. Black (dashed-dotted) is yaw,
red (solid) is pitch, while blue (dashed) is roll.

Fig. 4. Simulation results. Error in gyro bias estimates.

Fig. 5. Simulation results. Error in clock bias estimate.



that mainly the z-component of the position and velocity
estimates are influenced and drifts off. We note however that
degradation of performance is quite graceful and that the
observer recovers quickly without any resetting.

During the 300 s simulation the velocity of the satellites
leads to changes in the C matrix that lead to changes in
the gain matrix K, typically up to 20 %. It is verified that
updating P and the gain K by solving the algebraic Riccati
equation only every 30 s does not lead to any noticeable loss
of performance.

The computational complexity of the attitude observer is
a total of 138 arithmetic operations (additions and multi-
plications). This is the main contribution to computational
complexity, as these computations are scheduled at 100
Hz. In comparison, the translational motion observer is
updated at 1 Hz, which requires 249 arithmetic operations.
It should be mentioned that the Riccati-equation update has
a computational complexity of the same order of magnitude,
but is sufficient to update only at a rate of approximately
0.03Hz or less.

V. CONCLUSIONS

Position estimation based on range- and pseudo-range
measurements is an inherently nonlinear problem with non-
unique solutions due to the spherical topology involved. In
order to design an estimator for fusing the range measure-
ments with inertial and compass measurements, we have
designed a nonlinear observer where the only linearization is
made with respect to the pseudo-range measurement equa-
tions. The practical validity of the linearization is strongly
motivated by the fact that a computationally simple and
explicit formula can be used to explicitly solve the pseudo-
range equations in order to accurately initialize the nonlinear
observer position and velocity estimates. The observer has
exponential stability in a region of attraction that is semi-
global with respect to attitude initialization, and local with
respect to initialization of position and velocity. In contrast,
an EKF may have local region of attraction both with respect
to initialization of all states. A key feature of the method is
a time-scale separation that allows different observer blocks
to be updated at different rates, cf. Figure 1. This means that
the total nonlinear observer is computationally efficient.
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APPENDIX A

Lemma 6: Consider P , the solution of (34). There exists
a uniform upper bound on P−1 that is independent of θ ≥ 1.

Proof: We have that (34) is equivalent to

1

θ
Ṗ−1 + P−1A+ATP−1 − CTR−1C + P−1QP−1 = 0

Let X = P−1 with X(0) = P−1(0):

1

θ
Ẋ = −XAT −ATX + CTR−1C −XQX (38)

It is well known that X(t) > 0 for all t. For ||X|| large,
the last term in (38) will dominate the other terms. Hence,
there exists an α > 0 such that d

dt ||X|| < 0 for all ||X|| >
α. By choosing α sufficiently large, X−1(0) = P (0) ∈ P
also belongs to this invariant set. The proof is complete by
observing that the bound α does not depend on θ.
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