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Abstract—In this paper, an inertial navigation system (INS)
aided by a long baseline (LBL) ranging system is presented
and shown to have globally exponentially stable (GES) error
dynamics. It uses a novel formulation for relating pseudo-range
and pseudo-range-rate measurements linearly to position, ve-
locity, and a multiplicative bias parameter, the latter parameter
to correct for unknown wave speed, i.e. propagation speed in
the medium.

I. INTRODUCTION

In navigation, trilateration of ranges is an important tech-
nique for many applications. Common examples of use
include Global Navigation Satellite System (GNSS) for all
applications above the surface, radar systems for aerial
vehicles, and underwater long baseline (LBL) systems for
locating submarines, divers, ROVs, and AUVs. Common
for all these systems is that they use time-of-arrival (TOA)
measurements in order to retrieve the range from multiple
transmitters at known locations to a receiver. These range
measurements are normally corrupted by uncertainties result-
ing in biased measurements. The biased measurements are
denoted pseudo-ranges in order to separate them from the
actual ranges. Normally, four pseudo-range measurements
are needed to extract the position of the receiver and bias
parameter, assuming the bias is common for all measure-
ments. This generally yields two solutions, which is an
ambiguity that must be resolved. Having more pseudo-range
measurements available typically leads to a unique solution
[1], [2]. When range-rate measurements are also corrupted
by the bias parameter, they are denoted pseudo-range-rates.

In INS, inertial sensors such as gyroscopes and accelerom-
eters are typically used in a dead-reckoning fashion in order
to estimate the change in position, velocity, and attitude of a
vehicle. The integration of angular velocity and acceleration
with noise or bias will lead to an unbounded accumulated
error in the estimated states. This error can be corrected
through pseudo-range and pseudo-range-rate measurements,
e.g. as done in many GNSS applications or as done by
Batista [9] and Batista, Silvestre, and Oliveira [10], [11].
The underwater state-of-the-art commercial INS aided by
hydro-acoustic measurements is the HAIN system, owned
by Konsberg [13].

This paper considers translational motion observers
(TMOs) for estimation of position and velocity for under-
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water vehicles. Under water, GNSS cannot be used, because
of the high attenuation rate of electromagnetic waves in
water. Therefore, an LBL ranging system is assumed to
offer pseudo-ranges and pseudo-range-rates from time-of-
arrival (TOA) measurements retrieved with a request-respond
strategy from receiver to LBL-transponders. In this set up, the
uncertainty of unknown speed of sound in the surrounding
water, denoted the wave speed, affects the measurements.
Therefore, this will be corrected for in the TMO. It is
assumed that measurements of acceleration in the inertial
frame are available, e.g. gathered from an accelerometer and
Attitude Heading Reference System(AHRS).

When designing a TMO for integrating pseudo-range and
pseudo-range-rate and inertial measurements, there are two
design philosophies: loosely and tightly coupled integration.
In a loosely coupled scheme the position, velocity, and bias
parameter are explicitly extracted from the pseudo-range and
pseudo-range-rate measurements, yielding a linear relation
between measurements and states that is exploited when
integrating with inertial measurements. A tightly coupled
scheme generally uses the raw range measurements and
a non-linear measurement model in the integration. The
advantage of tight coupling is higher accuracy, while loose
coupling leads to a linear measurement model. The latter
simplifies the TMO’s structure.

The most common example of navigation aided by
pseudo-range measurements is GNSS. For practical reasons,
GNSS can not rely on a request-respond strategy for TOA
measurements. Therefore, the TOA measurements suffer
from an additive clock offset between the user and satellite
clock. Bancroft [1] and Chaffee and Abel [2] give formu-
lations for the explicit extraction of position and clock bias
from the GNSS pseudo-range measurements. This allows for
a loose integration scheme, which is used in e.g. Grip et al.
[6], [7]. The linear Kalman filter (KF) is the typically used
estimator in loosely coupled schemes, because of the linear
nature of the translational motion dynamics and measurement
equations. In tightly coupled schemes, the highly non-linear
nature of the pseudo-range measurement equations need to
be accounted for. Therefore, different varieties of non-linear
KFs such as the extended KF (EKF) and unscented KF
(UKF), in addition to particle filters (PF), are widely used.
Tight coupling allowed Hegrenzs et al. [12] to develop
an INS aided by only range measurement, in this case
from an underwater transponder. Tightly coupled schemes
also include formulations where “new” measurements are
constructed from the pseudo-range measurements, which
leads to a linear relationship between the constructed mea-



surements and the estimated states. This is done in e.g.
Johansen and Fossen [3], and Johansen, Fossen and Goodwin
[4] with a similar formulation as the one given in Bancroft
[1] and Chaffee and Abel[2]. Both the loosely and tightly
coupled estimators can be used with an external attitude
observer, e.g. one from Mahoney, Hamel, and Pflimlin [8],
or in cooperation with an attitude observer. In the latter,
the TMO feedbacks an estimate of the specific force to the
attitude observer which the attitude observer compares with
the accelerometer measurements, as in [3].

The three-stage filter, a new technique employing tightly
coupled schemes was presented in [4]. The first stage con-
structs “new” measurements, as described in the previous
section, in order to achieve a system on a linear time-varying
(LTV) form. In the second stage, the LTV system is used
by a LTV KF with uniformly globally asymptotically stable
(UGAS) error dynamics. The construction of new measure-
ments include non-linear operations that may significantly
increase the noise levels, thus lessening the accuracy of the
estimate. Near optimal performance can be recovered in the
third stage where a linearised KF is used, linearising the
original system about the state estimate from the LTV KF in
stage two, which is shown to achieve UGAS error dynamics
of the origin. This strategy yields UGAS error dynamics of
the origin of the cascade of KFs, while maintaining high
accuracy in the estimate.

In this paper, the three-stage filter from [4] is employed
for estimating an underwater vehicle’s position and velocity
with an INS aided by an LBL system with unknown wave
speed. Unknown wave speed leads to a multiplicative bias
as opposed to the additive bias in [4]. This demands a
formulation relating the pseudo-range and pseudo-range-rate
measurements to position, velocity, and bias parameter. A
formulation relating pseudo-range to position and bias was
developed by [9], but a linear relationship was not achieved
since the state space was augmented to deal with the non-
linearities instead. In order to relate the states linearly to
the measurements, the method of [1] and [2] is tailored for
multiplicative bias and extended to the case with pseudo-
range-rate measurements.

The contribution of this paper is the derivation of a filter
with GES error dynamics. This filter uses a novel formulation
relating the position, velocity, and multiplicative bias linearly
to the pseudo-range and pseudo-range-rate measurements.

This paper is organised as follows: In Section II, the
constructed measurements that has a linear relationship to
the states are derived for both minimal and redundant mea-
surements. In Section III, the three-stage filter is stated, and
the origin of the filter is proven GES. The implementation
and simulation of the filters follow in Section IV, before the
results are discussed in Section V.

II. MEASUREMENT MODEL

In this section, the notation is first defined and measure-
ment equations derived in Section II-A before the constructed
measurement equations are derived in Section II-B.

A. Measurement Equations

From the LBL system used in this paper, pseudo-range
and pseudo-range-rate from transponder ¢ are found from
TOA and Doppler shift measurements, denoted ¢; and A;,
respectively. y; = cot; and v; = c¢gd; are the pseudo-
range and pseudo-range-rates, respectively, and cg denotes
the guessed wave propagation speed. It deviates with a
factor of /B from the actual wave propagation speed, i.e.
cov/B = c. Let p" and v™ denote the position and velocity
of the vehicle, and p} the placement of transponder 7 in
the North-East-Down (NED) coordinate frame. Denoting p;
and p; the true range and range-rate from transponder 7, we
recognise

pi = lp" =P (1)
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where || - || is the 2-norm. This allows us to write
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where €, ; and €,; are zero-mean, Gaussian measurement
noise with standard deviations o, and o, respectively.

B. Constructed Measurement

In the following derivations, the noises €, ; and ¢, ; are
not explicitly included for simplicity of presentation.
Constructing the measurement
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and expanding and rearranging yields
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where r = p™ Tp™.
4 transponders: We define a partial state vector and a
selection matrix
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such that r can be expressed in terms of x as
r=x'Mz 5

We notice that (4) and (5) adds up to 5 equations for the 5
unknowns p", 3, and r. Now, r has to be found explicitly,
and we concatenate (4)
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where [ = [1,1,1,1]T and z = [||p}||2, ..., |92 ]|2] 7. If Cy, is
invertible, we can find
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Inserting (7) into (5) yields the second order equation
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This equation has two solutions
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where one is the correct, denoted r, and the other is wrong,
ro. In order to solve this ambiguity, one might often use
circumstantial knowledge, such as that x, when r5 is inserted
into (7), for example has a position that is below the sea floor
or a [ that greatly differs from 1.

5 or more transponders: With five or more transponders, r
can be eliminated by differencing the constructed equations
(4). We are now left with at least 4 linear equations for
the 4 unknowns p™ and 3 and can disregard the non-linear
equation (5).
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Here, we have related the range measurements to the par-
tial state, x, linearly. Now, pseudo-range-rate measurements
have to be related to the full state. The pseudo-range-rate is
given in (3b) and we see that the formulation
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leads to a formulation that is linear in both S and v™.
Concatenating the above equation yields
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This is valid for m > 4. Depending on whether m = 4 or
m > 5, (12) can be stacked with either (6) or (10). This
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for m > 5. Note that the constructed measurement equation
is linearly time-varying in C(t) or C’(t).

To the best of the authors knowledge, this formulation is
a contribution to the field, being a simple extension of the
work of [9] and [1].

III. POSITION AND VELOCITY FILTERS

The structure of the three-stage filter is shown in Figure 1.
It contains four subsystems that are explained in this section.

A. Subsystem X,: Non-linear Algebraic Transform

Subsystem X7 is given by the non-linear algebraic trans-
form (13) or (14) in Section II-B, relating the pseudo-range
and pseudo-range-rate measurements linearly to the state
vector, X.

B. Subsystem Yo: LTV Kalman-Bucy filter

Subsystem X, is an LTV Kalman-Bucy filter given by the
system model
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with measurement (13) or (14). The state estimate of this
KF is denoted X;. a™(t) is assumed to be a known, bounded
signal, and eg and ¢, defines the process noise covariance
matrix Q).

The non-linear operations performed in the construction
of (13) or (14), and the use of (8) or disregarding (5),
may significantly alter the noise characteristics from the
original measurements (3a)—(3b). Thus, a new measurement
covariance matrix, R;(t), has to be found. This is outlined
in Appendix A.

C. Subsystem Y3: Local Linearisation

Subsystem X3 linearises the original measurement equa-
tions (3a) and (3b) about the state estimate from > and
feed-forwards it to subsystem >4.

Let h(X) € R*™ denote the measurement function vector
whose elements h;(X) are given by (3a) and h;i.,(X) are
given by (3b) for ¢ € [1,m]. The linearised measurement
matrix becomes
dha (X)

dX

c R2m><7

H(X1) = (16)

dhay, ()
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A first-order Taylor approximation of the measurement func-
tion is found as

h(X) = h(X1) + H(X1)(X — X1)

Both H(X;) and h(X;) are feed-forwarded to subsystem
>y.
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D. Subsystem X.4: Linearised Kalman-Bucy filter

Subsystem ¥, is a Kalman-Bucy filter based on (15)
with measurements (3a)—(3b), measurement model (17), and
measurement matrix (16). Xo denotes the state estimate of
this KF.

E. Stability Analysis

This section considers the stability of the error dynamics
of the cascaded system ¥;-34 for the cases where m = 4
and m > 5.

Assumption 1: The matrix (13) or

[C}p: Cpp] in (14) has full rank.

yp?

[Cyp, Cpp]  in

Assumption 2: The ambiguity between r; and 75 can be
resolved when m = 4.

Proposition 1: The origin of the error dynamics of the
cascaded system ;-4 is GES under Assumption 1 and 2.
Proof: For both m = 4 and m > 5, it is trivial to show

that C,, has rank 3 under Assumption 1 since its columns
are linear combinations of linearly independent vectors. Also,

the non-linear algebraic transformation »; has one unique
solution for m > 5. This is true for m = 4 as well under
Assumption 2.

Now, Johansen and Fossen [S] shows that if the error
dynamics of the origins of 3o and X, are GES, then the
origin X; = X2 = 0 of the cascaded error dynamics ¥1—Y4
is GES.

For stability of X, it is required that the observability
Gramian

t1
W:/ BT (s,10)C T (5)C()B(s,t0)ds  (18)
to

has full rank. Since A is a nilpotent matrix, the state transi-
tion matrix can be found exactly as ®(s,to) = I7+A(s, to)h,
where I7 is the 7 x 7 identity matrix and h the sampling time.
The full rank of ®(s,ty) conserves the rank of C'T(s)C(s)
in (18). Hence, (18) has full rank under Assumption 1.

For the stability of X4, we argue that >4 is founded on the
same dynamics as X5 and that the non-linear transformation
from the measurement equations (3a)—(3b) of ¥, to the
measurement equations (13) or (14) of ¥, is invertible,
hence, the systems 3o and 34 are equivalent. Thus, stability
of X5 guarantees stability of 34, which concludes the proof.

|

Remark 1: Assumption 1 is true when the transponder
placement is non-coplanar.

Remark 2: The above proof guarantees that the error
dynamics of the origins of s and X4 are GES and uses
the proof from Johansen and Fossen [5] to show GES of the
error dynamics of the origin of the cascade »1-%,.

IV. SIMULATION

In this section, the three-stage filter >3-4 is tested in
simulations and compared to a state-of-the-art EKF. The
implementation of simulation and filters is covered in Section
IV-A. Further, in Section IV-B, the results of the simulations
are shown.

A. Implementation

The simulation set up assumes m = 4 hydroacoustic
transponders placed non-coplanarly on the sea floor at

Pt =1[10,10,0]", p5 = [10,—10,1]"
Py =[-10,10,2] ", pf = [-10,-10,0] "

For comparisons of transient behaviour, there is a large error
in the initial values: The true initial position and velocity
was po = [0,0,0]" and vy = [0,0,0] ", and the wave speed
was set to ¢* = 1450 ms~!. Two different scenarios were
simulated: one with a large initial error in order to show the
transient behaviours of the filters, and one with no initial
error to compare steady-state behaviour.

For the simulation with large initial errors, 5 = 0.8751,
i.e. co = 1550 ms~', was used. The initial state was pg =
[10,—15,—10], Bo = 1, and 9y = [0.1,0.2,0.1]T.

For the simulation with no initial errors, S = 1, i.e.
co = 1450 msfl, was used along with the initial state
f)o = [O,O,O]T, ﬂo =1, and 170 = [O,O,O]T.
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Fig. 2. Real and estimated trajectories for large initial error.

Range and range-rate measurements were gathered from
all transponders with a noise of standard deviation o, =
0.10 m and o, = 0.05 ms~! at a frequency of 2 Hz.
The inertial acceleration measurements are assumed to be
gathered with 100 Hz and have noise with standard deviation
o, = 0.01 ms—2. This gives a state covariance matrix
Q = diag(og,0y,04,0,) for Xo, ¥4, and EKF, and a
measurement covariance matrix

R = diag(oy, ..., 0y, 04, ..., 00)

for ¥4 and EKF. The R-matrix used in X2 is given by (19)
in Appendix A. o3 = 10~° was determined after tuning. The
initial covariance matrices was determined after tuning to be
P(0) = diag(10,10,10,1073,5-1072,5-1072,5 - 10~2)

The linearisation in X3 can either be about the a priori
estimate X or the a posteriori estimate X;. It is not obvious
which estimate is better, as X; is more noisy, but uncorrelated
with the measurement, whereas X; is less noisy, but corre-
lated with the measurements. This is an item for discussion
in Section V.

The simulations were run for 300 seconds, and the filters
were updated with a frequency of 100 Hz.

B. Results

In Figure 2 the true trajectory is shown along with the es-
timated trajectories. In Figures 3-5, the transient behaviours
of the three-stage filter and EKF are compared. X, is feed-
forwarded from the LTV KF to the linearised KF.

V. DISCUSSION

Although the simulations merely provide proof-of-concept
and give little evidence of real-life performance, it is still
interesting to benchmark the performance of the three-stage
filter against an EKF. In Figures 3-5, we see that the three-
stage filter converges significantly faster than the EKF for
all state values, especially the velocity estimate in Figure 4.

The Euclidean distance from the estimated to the true
trajectories is shown in Figure 6, where we see that the
filters have similar steady-state performance. The errors of
estimated position and velocity are not shown in this case,
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because they display a similar performance as Figure 6.
Figure 7 confirms this, as it can be seen that the wave speed
estimates of the two filters are nearly identical.

It is important to note that in addition to better transient
behaviour, three-stage filter also guarantees global exponen-
tial convergence, whereas the EKF can diverge because of
the linearisation of the covariance update law.

The computing power demanded by the three-stage filter is
approximately twice as high as the EKF, which is confirmed
in simulations. This is no surprise, as it employs two KFs
compared to the EKF’s one.

The performance difference between feed-forwarding X1
and X7 to X3 are shown in simulations to be indistinguish-
able. This, however, may not always be the case, especially
in applications where there is a stronger correlation between

X1 (t) and y(t).
VI. CONCLUSION

In this paper, an INS aided by LBL measurements for
navigation of underwater vehicles with unknown wave prop-
agation speed was derived and proven to have GES error
dynamics. A novel formulation that relates pseudo-ranges

and pseudo-range-rates linearly to position, velocity, and un-
certainty in wave propagation speed, which is a multiplicative
bias parameter, was used. This formulation is an extension
of Batista [9], Bancroft [1], and Chaffee and Abel [2]. The
formulation was used in the three-stage filter[4]. In fact,
this was the first time a multiplicative bias-formulation is
implemented with the three-stage filter.

The filter was in computer simulations shown to success-
fully estimate the position, velocity, and bias. It also showed
promising performance when benchmarked against an EKF.

This paper inspires further work such as extending the
state space to include estimation of specific force, and feed-
backing this into an attitude observer. The results in this
paper will also be verified using an experimental platform
that is currently being built.
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APPENDIX
A. Covariance of Constructed Measurements

The constructed measurement equations with noise are

1 1
y12 = B(Pz + €y,i)2 = E(P? + 2€y,ipi + 632)
1
2 2 2 2
5(
+ 2€ey,ipi — 2€y,mpm + €:L2/,i - Ez,m)
1 .
YiVi — YmVm = — ((pi + €y.0)(Pi + €04)

B
—(pm + Ey,m)(pm + EV,M))

1 . . . .
- B (pzpl — PmPm + €y,iPi — €y,mPm

+6u,ipi — €u,mPm + €y,i€vi — Ey,mev,m)

Now, the mean and variance of the constructed measurements
can be found and the covariance matrix R;(t) assembled
1 1
2 2 2
my; = E(y; — Epi) = 5% =My
li

1
mi,; =E(y; — vz, — E(pi —pn)) =0

Ry z( ) Var(yz) (2P ‘7 + 03)

2
32
R, ;(t) = Var(y; —yp,) = I ((pf + p?n)ag + 03)

1 . .
my,i = E(YiVi — YmVm — B (pifi — PmPm)) =0

R,i(t) = Var(y;vi — yme)
:(Pl erm) (p erqzn)a +J Z
Ry (t) = diag([Ry,1(2), ..., Ry,a(t), Ru1 (1), .., Ru,3(t)])
(19)
R (t) = diag([Ry 1 (t), ..., By, 4 (1), Ru1(t), . Ry 3(t)])



Since the constructed measurement yf is biased, m, must
be subtracted from y? before it is used, in the case when
m = 4. For the above equations, S can be assumed to be
approximately 1, or a conservative value of e.g. 5 = 0.8 can
be used.
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